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1 Abstract 

  State machines are a powerful tool for modelling software. 

Particularly in the field of embedded software development where 

parts of a system can be abstracted as state machine. 

 

Temporal logic languages can be used to formulate desired 

behaviour of a state machine. NuSMV allows to automatically 

proof whether a state machine complies with properties given as 

temporal logic formulas. 

 

mbedder is an integrated development environment for the C 

programming language. It enhances C with a special syntax for 

state machines. Furthermore, it can automatically translate the 

code into the input language for NuSMV. Thus, it is possible to 

make use of state-of-the-art mathematical proofing technologies 

without the need of error prone and time consuming manual 

translation. 

 

This paper gives an introduction to the subject of model checking 

state machines and how it can be done with mbeddr. It starts with 

an explanation of temporal logic languages. Afterwards, some 

features of mbeddr regarding state machines and their verification 

are discussed, followed by a short description of how NuSMV 

works. 
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2 Introduction 

Model checking  In the words of Cavada et al.: „The main purpose of a model 

checker is to verify that a model satisfies a set of desired properties 

specified by the user.” [1] 

 

mbeddr  As Ratiu et al. state in their paper “Language Engineering as an 

Enabler for Incrementally Defined Formal Analyses” [2], the 

semantic gap between general purpose programming languages 

and input languages for formal verification tools is too big. This 

prevents developers from using these verification tools. Their 

approach is the use of language engineering techniques. More 

abstract domain specific languages should be developed and used. 

To make automatic verification feasible, they should be limited to 

an automatically analysable subset of the general purpose 

language. All this should be possible in one tool to reduce time 

consuming and error prone processes and manual transformation. 

 

mbeddr [3] is an IDE built on top of the JetBrains Meta-

Programming System [4] as well as a set of domain specific 

language fragments which are integrated into the C language. 

Some main features are: 

 A C extension which allows a very convenient and good 

readable implementation of state machines. Via a 

translation for NuSMV the state machines can be analysed 

and some behaviour can be proofed mathematically.  

 Another C extension for decision tables making the code 

more readable than nested if statements. This decision 

tables can be checked for completeness and consistency. [5] 

 Requirements traces can be used to annotate program 

elements to link them with the requirements. 

 One can build own extensions to the C language. 

An overview over the mbeddr design can be seen in Figure 1. 

 

 

Figure 1 mbeddr at a glance [6] 
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NuSMV  NuSMV [7] is used by mbeddr to analyse state machines. Its 

developers Cimatti et al. describe it as follows:  

“NuSMV is a symbolic model checker originated from the 

reengineering, reimplementation and extension of SMV, the 

original BDD-based model checker developed at CMU. The NuSMV 

project aims at the development of a state-of-the-art symbolic model 

checker, designed to be applicable in technology transfer projects: it 

is a well-structured, open, flexible and documented platform for 

model checking, and is robust and close to industrial systems 

standards.” [8] 

 

Algorithms  NuSMV uses the algorithm presented in [9] as the basis for fair 

CTL model checking and the algorithm presented in [10] is used to 

support LTL model checking [11]. 

 

In [10] E. Clarke et al. “show how LTL model checking can be 

reduced to CTL model checking with fairness constraints.” 

 

In [9] J. R. Burch et al. „describe a general method that represents 

the state space symbolically instead of explicitly.“ The relations 

and formulas are represented as Binary decision Diagrams BDDs. 

By representing the state space symbolically instead of explicitly, 

they found an effective technique for combatting the state 

explosion problem. “Often systems with a large number of 

components have a regular structure that would suggest a 

corresponding regularity in the state graph. Consequently, it may 

be possible to find more sophisticated representations of the state 

space that exploit this regularity in a way that a simple table of 

states cannot. One good candidate for such a symbolic 

representation is the binary decision diagram (BDD) (Bryant, 

1986), which is widely used in various tools for the design and 

analysis of digital circuits. BDDs do not prevent a state explosion 

in all cases, but they allow many practical systems with extremely 

large state spaces to be verified - systems that would be impossible 

to handle with explicit state enumeration methods.” 

 

A short introduction to BDDs is given in the appendix. A further 

discussion of the algorithms is beyond the scope of this paper. 
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3 The Mathematical Basis 

  Model checking is about proofing. Therefore, a minimal 

mathematical background is needed to be able to handle the 

subject. This chapter is limited to the languages needed to 

formulate the desired properties of a model. This chapter is an 

aggregation of a lot of sources: [1] [12] [13] [14] [15] [16] [17] [18] 

[19] [20] [21] [22]. 

 

3.1 Temporal Logic 

Predicate logic  Predicate logic allows statements like “All lights are turned on” or 

“The light is dimmed down or the light is turned off”. These are 

general statements about a system without any reference to time. 

The well-known operators are [22]: 

 existential quantifier ∃ 

 universal quantifier ∀ 

 negation  ¬ 

 conjunction ∧ 

 disjunction ∨ 

 implication → 

 biconditional ↔ 

 

Temporal logic  Temporal logic is an extension to the predicate logic. It allows to 

refer to a system in different states at different times. One could 

make statements like “The light is turned on until the light switch 

is toggled”. 

 

3.2 Linear Temporal Logic LTL 

  With linear temporal logic LTL properties of a system can be 

described. In LTL a system is understood as a linear sequence of 

states the system can be in. Different system runs produce a 

different sequence of occupied states; in LTL a statement always 

refers to all possible sequences.  

 

Operators  LTL provides the following operators: 

 X: Refers to the next state. E.g., X ‘the light is off’ states 

that in the state following to the actual state, the light will 

be off. 

 G: Implies a global statement. E.g., G ‘the light is off’ 

denote that the light will be off in all upcoming states. 

 F: Tells that a statement will finally be true. It doesn’t tell 

when this will happen. E.g., F ‘the light bulb is broken’ tells 

that somewhere in the future the light bulb will be broken. 

 U: Until is a binary operator stating that a statement holds 

at least until another statement holds. E.g., ‘the light 

doesn’t shine’ U ‘the light switch is turned on’. In other 

words: It is sure that the light doesn’t shine until the light 

switch is turned on. After the light switch is turned on, the 

light can either shine or, if the light bulb is broken, it will 

not shine. 
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 R: The Release operator states that a statement holds until 

and including a state in which another statement will hold. 

Under the assumption that while mounting a light bulb, the 

light switch is turned off, the following example could be 

made: ‘the light doesn’t shine’ R ‘the light bulb is mounted’. 

This means that there isn’t light until the light bulb is 

mounted. In the first state after the mounting there isn’t 

any light, because there is no power. This operator also 

supports the possibility that the second state never occurs. 

E.g., the light bulb will never be mounted and thus the light 

will never shine.  

 

The essential difference between p U q and p R q is at the 

transition between p and q: U tells, that p holds until but 

not necessarily including the first state where q holds. R 

requires that there is at least one state where both p and q 

hold. 

 

3.3 Computation Tree Logic CTL 

  CTL is a branching time logic. The future states of a system are 

not determined yet and thus different evolutions are possible. This 

can be thought off as a branching tree where each branch stands 

for an alternative state transition. In CTL you can make 

statements that indicate a statement for at least one further 

development or for all further developments. 

 

Quantifiers over 

paths 

 Two additional quantifiers exist: 

 A: Is used for a statement that holds in all paths. 

 E: States that at least one path exists with a given 

property. 

 

There is a difference between ∀ and A, respectively between ∃ and 

E. The quantifiers of the predicate logic refer to the objects at one 

time. The path quantifiers of the CTL refer to states of the 

following paths. E.g., ∃ ‘a light that doesn’t shine’ states, that there 

is at least one light that does not shine at the moment. There is no 

connotation to the future or the past. EG ‘the light doesn’t shine’ 

states that there is at least one possible evolution where the light 

will never shine. So this is only a statement of the further 

development of the system. 

 

Path-specific 

quantifiers 

 To build a statement the same operators as in LTL are used. 

(Except the R operator. But this is not a restriction: For two 

expressions p and q, R can be simulated with “¬ (¬p U ¬q)”). 

 

Legal statements  In CTL a legal statement is always composed of a quantifier over 

paths and a path-specific quantifier. Legal examples are: 

 AX ‘the light doesn’t shine’: All possible next steps lead to a 

state where the light doesn’t shine. 

 EX ‘the light doesn’t shine’: At least one next step leads to a 

state where the light doesn’t shine. 
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 EG ‘the light doesn’t shine’: There is at least one possible 

evolution where the light will never shine. (Could be true if 

the light bulb is broken.) 

 AG ‘the light doesn’t shine’ U ‘the light switch is turned on’: 

In all possible evolutions the light will not shine until the 

light switch is turned on. 

 EF ‘the light bulb is broken’: At least one immediate 

transition exists after which the light bulb will be broken. 

 

3.4 CTL* 

CTL*  CTL and LTL are not identical although the expression power has 

some common possibilities. Neither is CTL a subset of LTL nor is it 

a superset. Thus, CTL* is defined which is a combination of CTL 

and LTL. 

 

Difference 

between CTL 

and LTL 

 The most obvious difference between CTL and LTL originates in 

the different rules using the A and E quantifiers: While in CTL 

every expression must have one, LTL doesn’t even know these 

symbols. LTL formulas always refer to all possible system runs. 

But the approach of translating an LTL formula to a CTL formula 

by adding an A quantifier in front of each clause will fail. This will 

be shown later on. The actual difference between these two 

languages lies in the semantic and the way a system run is 

thought of. 

 

A LTL formula makes a statement about all possible paths the 

system could run through. One single path is an infinite linear 

sequence of states the system could run through. Figure 2 shows a 

visualization of this mind model. 

 

A CTL formula makes a statement about all possible states a 

system could be in. From the most states the system has different 

branches of possible evolutions. This mind model is visualized in 

Figure 3. While looking at one single state in the system run, a 

CTL formula makes a statement about all possible further 

developments. While the A quantifier requires a property to hold in 

all branches, the E quantifier only requires the property to hold in 

one of them. 

 

 

 

 

 

 

 

 

 

 
Figure 2 Visualization of a system run 

in LTL [17] 

 

 Figure 3 Visualization of a system run 

in CTL [20]  
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Example 

statement only 

expressible in 

LTL 

 The following example refers to the state diagram shown in Figure 

4. The system has three states: a, b and c. From a it can either loop 

back to a or change over to b. From b it can only go further to c. 

And from c it can only loop back to c. Basically there are two 

distinct system evolutions. Either the system loops forever in state 

a. Or it eventually changes over to b and afterwards to c, where it 

will loop forever. 

 

The LTL formula  

FG(“the system is in state a” ∨ “the system is in state c”)  

states that in all possible system runs, the system will eventually 

reach a point after which it loops forever in state a or in state c. In 

other words (adapted from [12]): Every path has a finite prefix 

after which the property “the system is in state a” ∨ “the system is 

in state c” is always true. 

 

This statement can’t be translated to CTL. The approach of adding 

an A quantifier in front of each clause fails. The formula  

AF(AG(“the system is in state a” ∨ “the system is in state c”))  

would be too strict. It states that eventually it will hold that in all 

further branches the system can’t reach the state b anymore. This 

statement is false. In the system run which loops in a forever, 

there is always a branch where the system could change over to b. 

 

 

Figure 4 Example state diagram 

 

Example 

statement only 

expressible in 

CTL 

 

 This example also refers to the state diagram shown in Figure 4.  

The CTL formula 

AG(“the system is in state a” → (EF “the system is in state c”)) 

states that “On all branches it holds globally that: After being in 

state a, there is a possible further evolution which eventually 

reaches state c.” 

 

One naïve approach to translate this formula to LTL would be to 

omit the path quantifiers A and E. This would lead to the formula 

G(“the system is in state a” → (F “the system is in state c”)). 

This statement is false. In the system run where the system loops 

in state a forever, the system will never reach state c. LTL can only 

make statements which have to hold in every system run. Neither 

is it possible to make a statement which only holds in some system 

runs, nor is it possible to make a statement about possible 

alternative developments. 
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3.5 CTL* in mbeddr 

  The correct usage of CTL* expressions can be quite cumbersome. 

To facilitate writing correct checks, mbeddr provides a set of 

specification patterns. This patterns are based on CTL* 

expressions. Their description can be found on a website that is a 

“home of an online repository for information about property 

specification for finite-state verification” [23]. This is further 

discussed in chapter 4.5.2. 
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4 State Machines in mbeddr  

  In this chapter the handling of state machines in mbeddr is 

discussed on the basis of the LightSwitch example. First different 

representations of the LightSwitch are discussed, afterwards the 

possibilities to ensure the correctness of the implementation are 

shown: Unit testing and symbolic model checking. And last some 

further state machine modelling options provided by mbeddr are 

demonstrated. 

 

LightSwitch  For this paper a simple model of a light switch was developed. It 

will be used throughout this paper. There are three states: 

 off: In the State off the light is turned off. The LightSwitch 

doesn’t react to dimUp and dimDown events. On toggle it 

will go to the on state except the 

SERVICESTATE_THRESHOLD is reached, then it goes 

into the servicestate state. 

 on: In the State on the light is on. The brightness can be 

regulated with dimUp and dimDown. If the light is dimmed 

to dark, the LightSwitch turns off. If the light is too bright, 

it can’t be turned any brighter. 

 servicestate: If the LightSwitch is in the servicestate it 

doesn’t react to any further inputs. 

 

4.1 Graphical Representation of a State Model 

 

Figure 5 Graphical representation of the LightSwitch State Model 

 



Model Checking with mbeddr 

 

10 

 

Graphical 

representation 

 mbeddr is able to generate graphical representations of a state 

machine. The guards for the transitions can be shown as in the 

example above, or there is the choice to not show them. 

Unfortunately, only very short variable names can be handled 

correctly. Only a fragment will be shown if the variable name is too 

long. (The “_THRESHOLD” variable is actually called 

SERVICESTATE_THRESHOLD). 

 

4.2 State Model DSL in mbeddr 

  In mbeddr there is a C extension for state machines. This allows to 

specify a state machine in a very convenient and readable way. 

Some of the language is explained in this chapter. Listing 1 shows 

the implementation of the LightSwitch example. 

 
1. #define SERVICESTATE_THRESHOLD = 255;    
2. #define MIN_BRIGHTNESS = 1;    
3. #define MAX_BRIGHTNESS = 8;    
4. #define BRIGHTNESS_START = 5;   
5.    
6. [verifiable] 
7. statemachine LightSwitch initial = off {    
8.   var bounded_int[0..SERVICESTATE_THRESHOLD] onCounter = 0    
9.   readable var bounded_int[MIN_BRIGHTNESS..MAX_BRIGHTNESS] brightness = BRIGHTNESS_START 
10.       
11.   in toggle() <no binding>    
12.   in dimUp() <no binding>    
13.   in dimDown() <no binding>    
14.       
15.   state off {    
16.     on toggle [onCounter < SERVICESTATE_THRESHOLD] -> on    
17.     on toggle [onCounter >= SERVICESTATE_THRESHOLD] -> servicestate    
18.   } state off    
19.       
20.   state on {    
21.     entry { ++onCounter; }    
22.     on toggle [ ] -> off    
23.     on dimDown [brightness <= MIN_BRIGHTNESS] -> off    
24.     on dimDown [brightness > MIN_BRIGHTNESS] -> on { --brightness; }    
25.     on dimUp [brightness < MAX_BRIGHTNESS] -> on { ++brightness; }    
26.   } state on    
27.       
28.   state servicestate {    
29.         
30.   } state servicestate    
31. }   

Listing 1 LightSwitch state machine 

 

[verifiable] 

(line 6) 

 The keyword [verifiable] declares this state machine to be 

verifiable with the integrated model checker. Only a subset of the 

possibilities provided by the state machine construct can be used. 

Some restrictions are: 

 “Data types: all local variables, arguments of input or 

output events should have as type one of the following 

types: enumeration, boolean, int8, int16, int32 and 

bounded_int. In particular, we do not support floats or 

structs.” [24] (Page 270) 
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 “No access to global state: accessing global variables or 

calling global functions is not allowed. Mapping out-events 

to arbitrary functions is legal, though.” [24] (Page 270) 

 “Single assignment actions: in each effective action executed 

as a consequence of an event (i.e., exit action of the current 

state + transition action + entry action of the target state), a 

variable can be assigned only once.” [24] (Page 270) 

 No composite states are allowed. (For an example of a 

composite state see chapter 4.6) 

 

bounded_int 

(line 8) 

 In the LightSwitch example it would be possible to model all eight 

dim-levels as separate states. Variables are a convenient way to 

make scalable models. For the model checker the way of modelling 

these states doesn’t change the fact, that all states have to be 

checked. So limiting the possible values of a variable has a big 

impact on the time needed for the verification. 

 

Furthermore, by declaring the exact domain of definition, the 

checking algorithm has much more information to verify the 

model. 

 

readable var 

(line 9) 

 With the readable keyword a variable can be read from outside the 

state machine. Otherwise the value of variable is encapsulated 

inside the state machine. 

 

in 

(line 11) 

 The events that the state machine can receive are declared with 

the in keyword. 

 

state 

(line 15) 

 

 The state keyword marks the beginning of a state definition. 

 

entry 

(line 21) 

 

 The commands that will be executed when entering a state are 

listed after the entry keyword. 

 

on 

(line 16) 

 The desired transitions after an event are stated after the on 

keyword. Guards to restrict the transition can be specified in 

brackets. 

 

4.3 Translation to C-Code 

  This chapter discusses the mapping from the mbeddr 

representation of the state machine to C-Code. For better 

readability some function and variable names were modified. The 

complete and unmodified Code can be found in the appendix. The 

mapping of the state machines states and input as well as the type 

for keeping the current state are shown in Listing 2 and Listing 3. 

Listing 4 and Listing 5 show the code for initializing and running 

the state machine.  
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Data structure   The current state and the values of the variables are administrated 

in a struct as seen in Listing 2. 

 
1. struct sm_data_LightSwitch {   
2.   sm_states_LightSwitch __currentState;   
3.   uint8_t onCounter;   
4.   uint8_t brightness;   
5. };   

Listing 2 struct LightSwitch 

 

 

Events and 

states 

 Enumerations are generated to label the possible events and the 

states. This enumerations are shown in Listing 3. 

 
1. typedef enum sm_events_LightSwitch{   
2.   event_toggle,   
3.   event_dimUp,   
4.   event_dimDown   
5. } sm_events_LightSwitch;   
6.    
7. typedef enum sm_states_LightSwitch{   
8.   off__state,   
9.   on__state,   
10.   servicestate__state   
11. } sm_states_LightSwitch;   

Listing 3 Enumerations for events and states 

 

 

Initialisation  Listing 4 shows how the init method sets the initial state and 

values. 

 
1. void sm_init_LightSwitch( 

                      struct sm_data_LightSwitch* instance) 
2. {   
3.   instance->__currentState = off__state;   
4.   instance->onCounter = 0;   
5.   instance->brightness = MAIN_BRIGHTNESS_START;   
6. }   

Listing 4 LightSwitch initialisation 
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Transition logic  The sm_execute_LightSwitch method shown in Listing 5 handles 

all the logic of the state machine. The transition which has to be 

made is determined by two nested switch statements for the 

current state and the event, followed by if-statements to check the 

guard conditions. In the following block follows the actual 

transition logic: The new state is assigned and the entry actions for 

the new state are executed. 

 
1. void sm_execute_LightSwitch( 

                      struct sm_data_LightSwitch* instance, 
                      sm_events_LightSwitch event, 
                      void** arguments)    

2. {   
3.   switch (instance->__currentState)   
4.   {   
5.     case off__state: {   
6.       switch (event)   
7.       {   
8.         case event_toggle: {   
9.           if (instance->onCounter < SERVICESTATE_THRESHOLD) 
10.           {   
11.             // switch state   
12.             instance->__currentState = on__state;   
13.             // entry actions   
14.             ++instance->onCounter;   
15.             return ;   
16.           }   
17.           if (instance->onCounter >= SERVICESTATE_THRESHOLD) 
18.           { 
19.             // removed 
20.           } 
21.           break;   
22.         }   
23.       }   
24.       break;   
25.     }   
26.     case on__state:  
27.     { 
28.       // removed 
29.     }   
30.     case servicestate__state:  
31.     { 
32.       // removed  
33.     }   
34.   }  
35. }   

Listing 5 Transition logic 

 

Usage in code  While the generated code can be read and understood quite easy, 

the use of the somewhat long function, typedef and enum names 

could be quite cumbersome. To facilitate the use of state machines, 

mbeddr provides specialised syntax. Thereby, all the 

implementation details remain behind the scene. The handling of a 

state machine is discussed in the next chapter. 

 

4.4 Unit Testing a State Model 

  mbeddr extends the C-language with unit tests. This facilitates 

writing unit tests. For this chapter two unit tests were written to 

show the special syntax provided for unit tests as well as to show 

how to address a state machine in C code. 
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Code listing  

 
Listing 6 Unit tests for LightSwitch 

 

testToggle 

(line 6) 

 

 testToggle sends a toggle event to the lightSwitch and checks 

whether the reached state is on. Then it sends another toggle event 

and checks whether the reached state is off. 

 

testDimDown 

(line 15) 

 

 The second test case is a bit large and tests different behaviours in 

the context of dimDown. At line 20 the initial value of 

lightSwitch.brightness is checked. The loop starting at line 21 dims 

the lightSwitch several times so that the minimal brightness is 

reached. (Note that a while loop checking whether 

lightSwitch.brightness != MIN_BRIGHTNESS would not be a good 

choice: You wouldn’t test how many times you have to dimDown 

until the minimal brightness is reached.) At line 25 a final 

dimDown event is sent and at line 26 it is asserted that this leads 

to the off state. 

 

General unit 

testing syntax 

 

 mbeddr provides several syntax elements to support unit tests. 

 At line 2 and 3 the test cases are called with the test 

command. The test cases well-arranged in big brackets. 

 For declaring a test case the first level language element 

“test case” (line 6) is provided. This brands a function 

clearly as a unit test function. 

 The assert statement (line 19) is to formulate the checks. 

The number in the brackets can be used to refer to a assert 

statement within a test. If one check fails it eases to find 

the failing test. 

 

Unit testing 

state machines 

 A special syntax element for unit testing a state machine exists: 

test state machine (line 9 – 12). With this statement a sequence of 

events can be listed together with the expected following states. 

More complex sequences or tests which access variables of the 
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state machine can be written with conventional code as in 

testDimDown. 

 

Handling a state 

machine 

 mbeddr provides three functions to handle a state machine. This 

functions are not specific to unit testing but can also be used in 

normal C code. 

 sminit (line 17): Initialises the state machine in the initial 

state and the default values for the variables. 

 smtrigger (line 18): Sends an event to the state machine. 

 smIsInState (line 19): Checks weather the state machine is 

in the desired state. 

The readable variables of the state machine can be accessed like a 

member of an object in most object oriented languages (line 20). 

 

4.5 Symbolic Model Checking 

  Besides the many strong points, unit tests have one intrinsic down 

side: The only check particular cases. This is the strength of 

symbolic model checking: It provides a mathematical proof that a 

property holds in all possible program runs. 

 

mbeddr not only allows to specify specific checks for a state 

machine, but also brings default checks suitable for all state 

machines. 

 

4.5.1 Default Checks 

  mbeddr provides four different default checks which don’t have to 

be implemented by the user [24]. Figure 6 shows the check results 

for the LightSwitch. It can be seen that the variable onCounter can 

possibly be out of range after 257 events. Figure 7 shows the last 

few events of the trace triggering the bug. 

 

 

Figure 6 Result of default checks 

 

Unreachable 

States 

 It is checked for all states if they can be reached. If a state is 

unreachable under any circumstances, it would be dead code and 

could be removed. The question is whether the state is not needed 

or if there is a bug in the state model preventing the state to be 

reached. 
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Variable bounds  For the variables with bounds it is checked whether its bounds 

hold or if there is a way to bring its values out of its domain. In the 

LightSwitch example the bound for the variable onCounter is 

violated. The reason for this will be discussed further down. 

 

Nondeterministic 

Transitions 

 All transitions should be deterministic. I.e., if a state can have 

several successors for the same event, the guards should 

unambiguously define which transition is to take. 

 

If this rule is not obeyed, the state machine is still deterministic in 

mbeddr, because it implements guards with consecutive if 

statements. The first transition with a fulfilled guard is taken. 

 

Not-fireable 

Transitions 

 It is analysed whether all transitions can be fired or not. A 

transition that can’t ever be fired is dead code and the user should 

check if it can be removed or if there is a bug preventing the 

transition from being fired. 

 

Counter example  If a check fails, mbeddr provides an example how a condition can 

be violated. The trace shows as one block the state the system 

under test is in, the values of all variables and the ‘in’-event that 

will fire next. E.g., on the first four lines of Figure 7 one can see 

that the LightSwitch is in state on, the onCounter has the value 

251, brightness is 1 and the next ‘in’-event  will be dimUp. 

 

 

Figure 7 Counter example for range check of variable 

'onCounter' 

 

As seen in Figure 6 the onCounter of the LightSwitch can get out 

of its defined range. The trace size for the counter example is 257 

events long. For the understanding why the onCounter can get out 

of range the last few iterations are enough. One can see that each 

time dimUp or dimDown is fired, the onCounter is incremented. 

But the check whether the onCounter has reached the 

SERVICESTATE_THRESHOLD is implemented at the exit of the 

off state. The semantic of the variable name ‘onCounter’ indicates 

that it should only be increased when turning the light on. So this 
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is clearly a bug. An improved LightSwitch where this bug is 

eliminated can be seen in chapter 4.6. 

 

4.5.2 Manual Analyses 

  Further analyses can be formulated manually. The available 

patterns to formulate the desired properties are listed in Figure 8. 

The specification patterns mbeddr relies on [24], can be found on a 

website that is a “home of an online repository for information 

about property specification for finite-state verification” [23]. CTL 

as well as LTL based expressions are supported. 

 

In this chapter two patterns are exemplified. Listing 7 shows how 

this two patterns are applied to check the LightSwitch. 

 

 

Figure 8 Available expressions for defining checks 

 

always 

eventually 

reachable 

 This pattern allows to check, if a state remains reachable in any 

cases or if a sequence of events exists after which a state isn’t 

reachable anymore. E.g., the on state is not live, so the check 

‘always eventually reachable on’ will fail. Once fallen into the 

servicestate, the on state can’t be reached any more. On the other 

hand, the servicestate is live. From every possible state the state 

machine can be in, the servicestate remains reachable. 

 

P is false Before 

R 

 This pattern checks whether a condition P can be true before R 

happens. Line 4 in Listing 7 says that state on can’t be reached 

without ever toggling the light switch. 

 

 

Listing 7 Example checks for LightSwitch 
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4.6 Further Possibilities 

  This chapter shows some further possibilities that one has for 

modelling state machines in mbeddr. Therefore, the LightSwitch 

example is enhanced to a second version: The bug found in chapter 

4.5.1 is corrected by using a composite state, the dim functions can 

now handle a parameter and C functions are called which could 

address a device driver. The graphical representation of the 

LightSwicht2 can be seen in Figure 9 and the actual 

implementation is listed in Listing 8. 

 

 

Figure 9 Graphical representation of the LightSwitch2 State Model 

 

composite state 

(line 18) 

 With a composite state a hierarchical state machine can be built. A 

composite state has sub states. In the example the on state has the 

sub state dimmable which is used to handle the dimUp and 

dimDown events without leaving and re-entering the on state. 

Therefore, the bug found in the original LightSwitch is mended. 

This construct unfortunately prevents the state machine from 

being model checked. 

 

events with 

parameters 

(line 6 & 24) 

 Events can have parameters. LightSwitch2 can change the 

brightness several steps with one call dimUp or dimDown. The 

value of the parameter can be used in the guard condition as well 

as in the action. This can be seen on line 24 where the delta first is 

used to determine whether this transition should fire and if so how 

to calculate the new brightness. 

 

out events 

(line 9, 22 & 35) 

 When developing for embedded systems, a state machine is usually 

an abstraction of a real world device. Thus, the state machine 

doesn’t only need to manage the state and the transitions but also 

has to provoke the calls to the right functions of the device drivers. 
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On line 9 and 10 the out events are declared and bound to C 

functions outside of the state machine. The dependency of the state 

machine to other code is limited to one place. And furthermore, 

this still allows to model check the state machine. 

 

On line 22 the send statement is used to call the C function. And of 

course there has to be a corresponding function that could make a 

call to a device driver, as seen on line 35. 

 

 

 

Listing 8 Code for the LightSwitch2 state machine 
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5 NuSMV 

  mbeddr doesn’t do the model checking itself but delegates this to 

the NuSMV model checker. The collaboration works by generating 

an input file for NuSMV and after the checks parsing the output. 

This chapter discusses the input to NuSMV that mbeddr generates 

to analyse the LightSwitch state machine with the checks shown in 

chapter 4.5. For better readability, the variable names are shorted 

in this chapter. The complete original code can be found in the 

appendix. 

 

5.1 LightSwitch Definition 

  This chapter discusses how the implementation of the actual model 

is generated by mbeddr. Listing 9 shows the code. As said before, 

for better readability the variable names are shorted. 

  

Variable 

declaration 

(lines 1 – 4) 

 The state machine variables onCounter and brightness are 

declared on lines 2 and 3. The range for the NuSMV model is 

extended by one at the lower bound as well as at the upper bound. 

This is essential for the range checks. 

 

For managing the current state a variable _current_state is 

defined at line 4: This is an enumeration with all states of the 

LightSwitch. 

 

State transitions 

(lines 7 – 16) 

 The next section handles the state transitions. On line 7 the initial 

state is set. The lines 8 to 15 define the transition conditions 

including the guards. The pattern is to first check the current 

state, then check the fired event and last check if the guards let us 

through. The last transition on line 15 doesn’t change the current 

state: It assures that there is always a transition to take. Thus, it 

takes all the conditions checked above and negates them. 

 

onCounter  

(lines 18 – 24) 

 Each variable needs a separate block for keeping track of its value 

changes. First the initial value for the onCounter is set on line 18. 

For the actual calculation of the next value pretty much the same 

pattern is used as for the state transitions: First the current state 

is checked, then the fired event and last the guards are calculated. 

 

In contrast to the states, the new value for the onCounter must be 

calculated and the bounds have to be checked before the new value 

can be assigned. This makes the second part of the lines 20 – 23. 

First the range of the value has to be assured: Thus, it is checked if 

the new value violates the lower or the upper bound. If the new 

value is ok it is assigned to the variable. The onCounter has a 

declared range that begins at -1, one under the lower bound, and 

ends at 256, one above the upper bound. These extra values are 

used if the onCounter violates its bounds. Hence, it will later be 

easy to formulate the bound checks. 

 

brightness  

(lines 26 – 31) 

 

 For the brightness the same algorithm is used as for the 

onCounter. 
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1. VAR   
2.   v_onCounter:-1..256;   
3.   v_brightness:0..9;   
4.   _current_state:{off,on,servicestate};   
5.    
6. ASSIGN   
7.   init (_current_state) := off;   
8.   next (_current_state) := case   
9.     (_current_state = off) & (in_toggle = TRUE) & (v_onCounter < 255) : on;   
10.     (_current_state = off) & (in_toggle = TRUE) & (v_onCounter >= 255) : servicestate; 
11.     (_current_state = on) & (in_toggle = TRUE) : off;   
12.     (_current_state = on) & (in_dimDown = TRUE) & (v_brightness <= 1) : off;   
13.     (_current_state = on) & (in_dimDown = TRUE) & (v_brightness > 1) : on;   
14.     (_current_state = on) & (in_dimUp = TRUE) & (v_brightness < 8) : on;   
15.     !(((_current_state = off) & (in_toggle = TRUE) & (v_onCounter < 255))) 

     & !(((_current_state = off) & (in_toggle = TRUE) & (v_onCounter >= 255))) 
     & !(((_current_state = on) & (in_toggle = TRUE))) & !(((_current_state = on) 
     & (in_dimDown = TRUE) & (v_brightness <= 1))) & !(((_current_state = on) 
     & (in_dimDown = TRUE) & (v_brightness > 1))) & !(((_current_state = on) 
     & (in_dimUp = TRUE) & (v_brightness < 8))) : _current_state;   

16.   esac;   
17.    
18.   init (v_onCounter) := 0;   
19.   next (v_onCounter) := case   
20.     (_current_state = off) & (in_toggle = TRUE) & (v_onCounter < 255) :  

     v_onCounter + 1 < 0 ? -1 : v_onCounter + 1 > 255 ? 256 : v_onCounter + 1;   
21.     (_current_state = on) & (in_dimDown = TRUE) & (v_brightness > 1) :  

     v_onCounter + 1 < 0 ? -1 : v_onCounter + 1 > 255 ? 256 : v_onCounter + 1;   
22.     (_current_state = on) & (in_dimUp = TRUE) & (v_brightness < 8) :  

     v_onCounter + 1 < 0 ? -1 : v_onCounter + 1 > 255 ? 256 : v_onCounter + 1;   
23.     !(((_current_state = off) & (in_toggle = TRUE) & (v_onCounter < 255)))  

     & !(((_current_state = on) & (in_dimDown = TRUE) & (v_brightness > 1)))  
     & !(((_current_state = on) & (in_dimUp = TRUE) & (v_brightness < 8))) :  
     v_onCounter < 0 ? -1 : v_onCounter > 255 ? 256 : v_onCounter;   

24.   esac;   
25.    
26.   init (v_brightness) := 5;   
27.   next (v_brightness) := case   
28.     (_current_state = on) & (in_dimDown = TRUE) & (v_brightness > 1) :  

     v_brightness - 1 < 1 ? 0 : v_brightness - 1 > 8 ? 9 : v_brightness - 1;   
29.     (_current_state = on) & (in_dimUp = TRUE) & (v_brightness < 8) :  

     v_brightness + 1 < 1 ? 0 : v_brightness + 1 > 8 ? 9 : v_brightness + 1;   
30.     !(((_current_state = on) & (in_dimDown = TRUE) & (v_brightness > 1)))  

     & !(((_current_state = on) & (in_dimUp = TRUE) & (v_brightness < 8))) :  
     v_brightness < 1 ? 0 : v_brightness > 8 ? 9 : v_brightness;   

31.   esac;   

Listing 9 LightSwitch implementation for NuSMV (generated by mbeddr) 

 

5.2 Automatic Checks 

  In this chapter the automatically provable assertions are 

discussed. 

 

Reachability 

checks 

 The reachability checks seen in Listing 10 assert that all states are 

reachable, i.e., there are no dead states. For the reachability check 

a CTL formula is used. Line 1 says “In all possible system runs it is 

true in every state that the current state is not the off state”. 

Therefore, if this NuSMV check fails we have the success scenario 

of the mbeddr reachability check. On line 2 the text is defined 

which will be used in mbeddr to describe the outcome of the check. 
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1. SPEC  AG _current_state != off   
2. --SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD### 

  State 'off' is reachable | State 'off' is unreachable   
3.    
4. SPEC  AG _current_state != on   
5. --SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD### 

  State 'on' is reachable | State 'on' is unreachable   
6.    
7. SPEC  AG _current_state != servicestate   
8. --SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD### 

  State 'servicestate' is reachable | State 'servicestate' is unreachable   

Listing 10 NuSMV reachability checks (generated by mbeddr) 

 

Range checks  The range checks make sure that variables will stick to their 

bounds. Line 1 in Listing 11 says “In all possible evolutions and in 

all states onCounter will be bigger or equal to 0 and smaller or 

equal to 255”. 0 and 255 are de bounds defined for the variable 

onCounter. 

 
1. SPEC  AG (0 <= v_onCounter & v_onCounter <= 255)   
2. --Variable 'onCounter' is always between its defined bounds  

  | Variable 'onCounter' is possibly out of range   
3.    
4. SPEC  AG (1 <= v_brightness & v_brightness <= 8)   
5. --Variable 'brightness' is always between its defined bounds  

  | Variable 'brightness' is possibly out of range   

Listing 11 NuSMV range checks (generated by mbeddr) 

 

Determinism 

checks 

 The nondeterminism checks assert that all transitions are 

deterministic, i.e., the state machine doesn’t allow two transitions 

to fire at the same time. Listing 12 shows how the model for the 

NuSMV state machine is enhanced with an additional variable and 

its transitions. 

 

The variable on line 2 is an enumeration with four possible values: 

 no_nondeterminism states that no nondeterminism was 

found 

 nd_detected_inoff states that in state off a nondeterministic 

transition is found 

 nd_detected_inon states that in state on a nondeterministic 

transition is found 

 nd_detected_inservicestate state that in the servicestate a 

nondeterministic transition is found. 

 

At line 5 the transitions for the nondeterminism checks begin with 

the initialisation of the nondeterminism detector variable. 

Afterwards, for each state that can react to an event with different 

transitions it is checked, whether the guards are distinct or not. 

This is achieved by making checks where the guards are checked 

in a pairwise conjunction. E.g., the state off can react to the event 

toggle by going into the on state if the onCounter is smaller than 

255 or by going into the servicestate if the onCounter is 255 or 

bigger. Thus, these to conditions are put into a conjunction 

(together with the prerequisite that the state machine actually is 

in the off state and the toggle event is fired). If this conjunction can 
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be true, a non-deterministic transition would exist (what obviously 

isn’t the case in this scenario). 

 

For three different transitions from one state to one event, six 

check cases would be formulated, etc. As a conjunction is 

commutative, this are more checks than actually needed. But it 

generates the desired output. 

 

This groundwork provided the actual check conditions can be 

formulated in trivial CTL statements, like on line 14: In all 

possible evolutions on all states the nondeterminism detector 

variable never is in the state which indicates a nondeterministic 

transition. 

 
1. VAR   
2.   _nondeterminism_detector:{no_nondeterminism,nd_detected_inoff, 

                            nd_detected_inon,nd_detected_inservicestate};   
3.    
4. ASSIGN   
5.     init (_nondeterminism_detector) := no_nondeterminism;   
6.   next (_nondeterminism_detector) := case   
7.     (_current_state = off) & (in_toggle = TRUE) & (v_onCounter >= 255)  

     & (v_onCounter < 255) : nd_detected_inoff;   
8.     (_current_state = off) & (in_toggle = TRUE) & (v_onCounter < 255)  

     & (v_onCounter >= 255) : nd_detected_inoff;   
9.     (_current_state = on) & (in_dimDown = TRUE) & (v_brightness > 1)  

     & (v_brightness <= 1) : nd_detected_inon;   
10.     (_current_state = on) & (in_dimDown = TRUE) & (v_brightness <= 1)  

     & (v_brightness > 1) : nd_detected_inon;   
11.     TRUE : no_nondeterminism;   
12.   esac;   
13.      
14. SPEC  AG _nondeterminism_detector != nd_detected_inoff   
15. --State 'off' has deterministic transitions  

  | State 'off' contains nondeterministic transitions   
16.    
17. SPEC  AG _nondeterminism_detector != nd_detected_inon   
18. --State 'on' has deterministic transitions  

  | State 'on' contains nondeterministic transitions   
19.    
20. SPEC  AG _nondeterminism_detector != nd_detected_inservicestate   
21. --State 'servicestate' has deterministic transitions  

  | State 'servicestate' contains nondeterministic transitions   

Listing 12 NuSMV determinism checks (generated by mbeddr) 

 

Dead transition 

checks 

 The dead transition checks, listed in Listing 13, assert that all 

transitions can be fired. For these checks the model for the NuSMV 

state machine is enhanced with an additional variable and its 

transitions.  

 

The variable _dead_transition is an enumeration. Beside an initial 

value, every value can indicate whether the according transition is 

dead or not. 

 

The names of the values are a bit misleading: If the variable 

_dead_transition can have e.g. the value 

state_off_transition_0_is_dead this indicates that the first 

transition of the off state is not dead. 
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For every transition in the LightSwitch state machine one 

according transition for the _dead_transition variable is defined. 

As in all other checks the first to parts of the conjunction is to 

check the state-event combination. In the third argument the 

guard is checked. E.g., on line 7 it is checked whether the 

transition from the off state to the on state fired on the toggle 

event can actually be fired, or if the guard always is false. 

 

The groundwork for this check is done in the transition logic. So 

the CTL check conditions are quite trivial. It is checked that in all 

possible evolutions in all states the _dead_transition variable 

never has another value than dead_trans_init. Therefore, on lines 

16 to 32 for every other value of the enumeration a check case is 

specified which asserts that the _dead_transition variable can’t 

ever have that value. 

 
1. VAR   
2.   _dead_transition:{dead_trans_init,state_off_transition_0_is_dead, 

                    state_off_transition_1_is_dead,state_on_transition_0_is_dead, 
                    state_on_transition_1_is_dead,state_on_transition_2_is_dead, 
                    state_on_transition_3_is_dead};   

3.      
4. ASSIGN   
5.   init (_dead_transition) := dead_trans_init;   
6.   next (_dead_transition) := case   
7.     (_current_state = off) & (in_toggle = TRUE) & (v_onCounter < 255) : 

     state_off_transition_0_is_dead;   
8.     (_current_state = off) & (in_toggle = TRUE) & (v_onCounter >= 255) :  

     state_off_transition_1_is_dead;   
9.     (_current_state = on) & (in_toggle = TRUE) & (TRUE) :  

     state_on_transition_0_is_dead;   
10.     (_current_state = on) & (in_dimDown = TRUE) & (v_brightness <= 1) :  

     state_on_transition_1_is_dead;   
11.     (_current_state = on) & (in_dimDown = TRUE) & (v_brightness > 1) :  

     state_on_transition_2_is_dead;   
12.     (_current_state = on) & (in_dimUp = TRUE) & (v_brightness < 8) :  

     state_on_transition_3_is_dead;   
13.     TRUE : dead_trans_init;   
14.   esac;   
15.      
16. SPEC  AG _dead_transition != state_off_transition_0_is_dead   
17. --SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD### 

  Transition 0 of state 'off' is not dead | Transition 0 of state 'off' is dead   
18.    
19. SPEC  AG _dead_transition != state_off_transition_1_is_dead   
20. --SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD### 

  Transition 1 of state 'off' is not dead | Transition 1 of state 'off' is dead   
21.    
22. SPEC  AG _dead_transition != state_on_transition_0_is_dead   
23. --SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD### 

  Transition 0 of state 'on' is not dead | Transition 0 of state 'on' is dead   
24.    
25. SPEC  AG _dead_transition != state_on_transition_1_is_dead   
26. --SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD### 

  Transition 1 of state 'on' is not dead | Transition 1 of state 'on' is dead   
27.    
28. SPEC  AG _dead_transition != state_on_transition_2_is_dead   
29. --SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD### 

  Transition 2 of state 'on' is not dead | Transition 2 of state 'on' is dead   
30.    
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31. SPEC  AG _dead_transition != state_on_transition_3_is_dead   
32. --SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD### 

  Transition 3 of state 'on' is not dead | Transition 3 of state 'on' is dead   

Listing 13 NuSMV dead transition checks (generated by mbeddr) 

 

5.3 Manual Checks 

  In this chapter the translation of the manually formulated checks 

to NuSMV input is explained. 

 

Liveness checks  To assure that a state is live, i.e., in every evolution of the state 

machine it remains reachable, the following CTL statement is 

checked: In all evolutions in every state it is true that: In at least 

one further evolution finally the desired state can be reached. The 

corresponding NuSMV code is listed in Listing 14. 

 
1. SPEC  AG (EF _current_state = on)   
2. --State 'on' is live | State 'on' is not live!   
3.    
4. SPEC  AG (EF _current_state = servicestate)   
5. --State 'servicestate' is live | State 'servicestate' is not live!   

Listing 14 NuSMV liveness checks (generated by mbeddr) 

 

P is false  

before R 

 As seen in Listing 7, it is checked if the state on is not reached 

before toggle is fired. This check is translated into the LTL formula 

shown in Listing 15. The left part of the implication is true iff the 

event toggle will eventually be fired in all possible evolutions. As 

nothing can prevent an event from being fired, this of course is 

true. Therefore, the result of this specific check depends only on 

the right site of the implication. There it is assured that the 

current state is not on until the event toggle is fired. So this is 

straight forward the originally formulated condition. 

 
1. LTLSPEC ((F (in_toggle)) -> ((!(_current_state = on)) U (in_toggle)))   
2. --Condition 'on' is not true before 'toggle'  

  | Condition 'on' can be true before 'toggle' 

Listing 15 NuSMV P is false before R checks (generated by mbeddr) 
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6 Conclusion 

  This paper gives a rough walkthrough how state machines can be 

modelled and checked with mbeddr. It shows the mathematical 

languages CTL and LTL and how they are used in mbeddr and 

NuSMV. The modelling possibilities for state machines in mbeddr 

are discussed including the unit test support and the translation to 

C code. Furthermore, the possibilities provided by mbeddr of 

formulating desired properties for a state model are shown. Finally 

it is revealed how mbeddr uses NuSMV to do the check work. 

 

It is apparent that supporting higher level abstractions like state 

machines as a first level language concept brings many benefits. 

Not only an IDE can support a good readable syntax but also can 

generate valuable outputs, e.g., graphical representations or 

translations for other tools like NuSMV. Furthermore, 

automatisms can be supported like default check cases. 

Eliminating the manual work not only saves time but also 

increases quality. 

 

Unit tests are an important tool for software development. They 

not only help avoiding bugs, they can also help to improve system 

design and architecture. Furthermore, good unit tests can show 

how a unit can be accessed. But there is one intrinsic down side: 

They only check particular cases. A fully coverage of all 

possibilities a system can run through is hardly possible. This is 

where model checking comes into play. Symbolic model checking 

allows to proof that a given property holds in every possible system 

run. This power comes with a price: The properties have to be 

written in a mathematical language. This language is not 

necessarily intuitive and may be difficult to use correctly. It is 

probably not the language of a software engineer used to write 

imperative code. 

 

None the less, the certainty of a mathematical proof can be of high 

value. Especially for safety critical systems. Today different 

technologies are available. This paper discussed how state 

machines can be analysed using mbeddr together with NuSMV 

relying on a BDD based proofing technique. Other approaches 

exist. E.g., NuSMV was extended with a SAT based bounded model 

checker [25]. mbeddr includes an alternative to NuSMV: it 

supports the CBMC bounded model checker [26]. 
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Appendix 
 

  The appendix consists of four parts: The documentation of a bug 

found in mbeddr, a very short introduction to BDDs, the complete, 

unmodified C code for the LightSwitch and the complete, 

unmodified input for NuSMV. 

 

8 Bug Report 

  While working on this paper, I found and reported a bug. Fiddling 

around with some checks in mbeddr, I realized that the check 

outcome depends on the existence of other checks. Actually the 

results seemed quite random. Asking the developers of mbeddr, 

they confirmed the bug and provided the following workaround: 

The check conditions based on CTL must be stated in front of the 

LTL conditions. 

 

9 Binary Decision Diagrams BDDs 

  This chapter gives a very short introduction to Binary Decision 

Diagrams BDDs. A BDD is a directed acyclic graph. It represents a 

Boolean formula. Figure 10 shows the BDD for the formula  

“(a ∧ b) ∨ (c ∧ d)”. Given a specific assignment for the variables, one 

can determine the result of the formula by traversing the graph 

starting at its root. The assignment a = 0, b = 1, c = 1, d = 0 leads 

to a leaf with value 0. Therefore, the result of the formula is false. 

This can be seen in Figure 11. 

 

 

 

 

 

Figure 10 BDD for the formula 

(a ∧ b) ∨ (c ∧ d) [9] 

 

 Figure 11 BDD evaluation of the formula 

(a ∧ b) ∨ (c ∧ d) for a = 0, b = 1, c = 1, d = 0 
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10 LightSwitch C Code 

  Subsequent is the C code for the LightSwitch. This code is 

automatically generated by mbeddr. This is the original version 

with original variable names. 

 
1. #define MAIN_SERVICESTATE_THRESHOLD (255)   
2. #define MAIN_MIN_BRIGHTNESS (1)   
3. #define MAIN_MAX_BRIGHTNESS (8)   
4. #define MAIN_BRIGHTNESS_START (5)   
5.    
6.    
7. typedef enum ___main_sm_events_LightSwitch{   
8.   main_sm_events_LightSwitch__LightSwitch__event_toggle,   
9.   main_sm_events_LightSwitch__LightSwitch__event_dimUp,   
10.   main_sm_events_LightSwitch__LightSwitch__event_dimDown   
11. } main_sm_events_LightSwitch;   
12.    
13. typedef enum ___main_sm_states_LightSwitch{   
14.   main_sm_states_LightSwitch__LightSwitch_off__state,   
15.   main_sm_states_LightSwitch__LightSwitch_on__state,   
16.   main_sm_states_LightSwitch__LightSwitch_servicestate__state   
17. } main_sm_states_LightSwitch;   
18.    
19. struct main_sm_data_LightSwitch {   
20.   main_sm_states_LightSwitch __currentState;   
21.   uint8_t onCounter;   
22.   uint8_t brightness;   
23. };   
24.    
25. void main_sm_init_LightSwitch(struct main_sm_data_LightSwitch* instance)    
26. {   
27.   instance->__currentState = main_sm_states_LightSwitch__LightSwitch_off__state;   
28.   instance->onCounter = 0;   
29.   instance->brightness = MAIN_BRIGHTNESS_START;   
30. }   
31.    
32. void main_sm_execute_LightSwitch(struct main_sm_data_LightSwitch* instance, main_sm_

events_LightSwitch event, void** arguments)    
33. {   
34.   switch (instance->__currentState)   
35.   {   
36.     case main_sm_states_LightSwitch__LightSwitch_off__state: {   
37.       switch (event)   
38.       {   
39.         case main_sm_events_LightSwitch__LightSwitch__event_toggle: {   
40.           if ( instance->onCounter < MAIN_SERVICESTATE_THRESHOLD )    
41.           {   
42.             // switch state   
43.             instance-

>__currentState = main_sm_states_LightSwitch__LightSwitch_on__state;   
44.             // entry actions   
45.             ++instance->onCounter;   
46.             return ;   
47.           }   
48.    
49.           if ( instance->onCounter >= MAIN_SERVICESTATE_THRESHOLD )    
50.           {   
51.             // switch state   
52.             instance-

>__currentState = main_sm_states_LightSwitch__LightSwitch_servicestate__state;   
53.             return ;   
54.           }   
55.    



Model Checking with mbeddr 

 

31 

 

56.           break;   
57.         }   
58.       }   
59.    
60.       break;   
61.     }   
62.     case main_sm_states_LightSwitch__LightSwitch_on__state: {   
63.       switch (event)   
64.       {   
65.         case main_sm_events_LightSwitch__LightSwitch__event_toggle: {   
66.           if ( 1 )    
67.           {   
68.             // switch state   
69.             instance-

>__currentState = main_sm_states_LightSwitch__LightSwitch_off__state;   
70.             return ;   
71.           }   
72.    
73.           break;   
74.         }   
75.         case main_sm_events_LightSwitch__LightSwitch__event_dimDown: {   
76.           if ( instance->brightness <= MAIN_MIN_BRIGHTNESS )    
77.           {   
78.             // switch state   
79.             instance-

>__currentState = main_sm_states_LightSwitch__LightSwitch_off__state;   
80.             return ;   
81.           }   
82.    
83.           if ( instance->brightness > MAIN_MIN_BRIGHTNESS )    
84.           {   
85.             // transition actions   
86.             --instance->brightness;   
87.             // switch state   
88.             instance-

>__currentState = main_sm_states_LightSwitch__LightSwitch_on__state;   
89.             // entry actions   
90.             ++instance->onCounter;   
91.             return ;   
92.           }   
93.    
94.           break;   
95.         }   
96.         case main_sm_events_LightSwitch__LightSwitch__event_dimUp: {   
97.           if ( instance->brightness < MAIN_MAX_BRIGHTNESS )    
98.           {   
99.             // transition actions   
100.             ++instance->brightness;   
101.             // switch state   
102.             instance-

>__currentState = main_sm_states_LightSwitch__LightSwitch_on__state;   
103.             // entry actions   
104.             ++instance->onCounter;   
105.             return ;   
106.           }   
107.    
108.           break;   
109.         }   
110.       }   
111.    
112.       break;   
113.     }   
114.     case main_sm_states_LightSwitch__LightSwitch_servicestate__state: {   
115.       switch (event)   
116.       {   
117.       }   
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118.    
119.       break;   
120.     }   
121.   }   
122.    
123. }   

Listing 16 Generated C code for LightSwitch 

 

11 LightSwitch NuSMV Code 

  Subsequent is the input for NuSMV. This code is automatically 

generated by mbeddr. This is the original version with original 

variable names. 

 
1. --r:e9b6775d-aa85-4773-8f3a-876caff40de4(LightSwitch.Main.main)   
2.    
3. MODULE statemachine( in__toggle__present_ID_2288752385279320977, in__dimUp__present_

ID_2288752385279321016, in__dimDown__present_ID_2288752385279321017)   
4.    
5. VAR    
6.     lv__onCounter_ID_2288752385279320971:-1..256;   
7.     lv__brightness_ID_2288752385279321005:0..9;   
8.     _current_state:{off_ID_2288752385279320980,on_ID_2288752385279320992,servicestat

e_ID_2288752385279321001};   
9.     _nondeterminism_detector:{no_nondeterminism,nd_detected_inoff,nd_detected_inon,n

d_detected_inservicestate};   
10.     _dead_transition:{dead_trans_init,state_off_transition_0_is_dead,state_off_trans

ition_1_is_dead,state_on_transition_0_is_dead,state_on_transition_1_is_dead,state_on
_transition_2_is_dead,state_on_transition_3_is_dead};   

11.    
12.    
13. ASSIGN   
14.     init (_current_state) := off_ID_2288752385279320980;   
15.     next (_current_state) := case   
16.         (_current_state = off_ID_2288752385279320980) & (in__toggle__present_ID_2288

752385279320977 = TRUE) & (lv__onCounter_ID_2288752385279320971 < 255) : on_ID_22887
52385279320992;   

17.         (_current_state = off_ID_2288752385279320980) & (in__toggle__present_ID_2288
752385279320977 = TRUE) & (lv__onCounter_ID_2288752385279320971 >= 255) : servicesta
te_ID_2288752385279321001;   

18.         (_current_state = on_ID_2288752385279320992) & (in__toggle__present_ID_22887
52385279320977 = TRUE) : off_ID_2288752385279320980;   

19.         (_current_state = on_ID_2288752385279320992) & (in__dimDown__present_ID_2288
752385279321017 = TRUE) & (lv__brightness_ID_2288752385279321005 <= 1) : off_ID_2288
752385279320980;   

20.         (_current_state = on_ID_2288752385279320992) & (in__dimDown__present_ID_2288
752385279321017 = TRUE) & (lv__brightness_ID_2288752385279321005 > 1) : on_ID_228875
2385279320992;   

21.         (_current_state = on_ID_2288752385279320992) & (in__dimUp__present_ID_228875
2385279321016 = TRUE) & (lv__brightness_ID_2288752385279321005 < 8) : on_ID_22887523
85279320992;   

22.         !(((_current_state = off_ID_2288752385279320980) & (in__toggle__present_ID_2
288752385279320977 = TRUE) & (lv__onCounter_ID_2288752385279320971 < 255))) & !(((_c
urrent_state = off_ID_2288752385279320980) & (in__toggle__present_ID_228875238527932
0977 = TRUE) & (lv__onCounter_ID_2288752385279320971 >= 255))) & !(((_current_state 
= on_ID_2288752385279320992) & (in__toggle__present_ID_2288752385279320977 = TRUE))) 
& !(((_current_state = on_ID_2288752385279320992) & (in__dimDown__present_ID_2288752
385279321017 = TRUE) & (lv__brightness_ID_2288752385279321005 <= 1))) & !(((_current
_state = on_ID_2288752385279320992) & (in__dimDown__present_ID_2288752385279321017 = 
TRUE) & (lv__brightness_ID_2288752385279321005 > 1))) & !(((_current_state = on_ID_2



Model Checking with mbeddr 

 

33 

 

288752385279320992) & (in__dimUp__present_ID_2288752385279321016 = TRUE) & (lv__brig
htness_ID_2288752385279321005 < 8))) : _current_state;   

23.     esac;   
24.    
25.     init (_nondeterminism_detector) := no_nondeterminism;   
26.     next (_nondeterminism_detector) := case   
27.         (_current_state = off_ID_2288752385279320980) & (in__toggle__present_ID_2288

752385279320977 = TRUE) & (lv__onCounter_ID_2288752385279320971 >= 255) & (lv__onCou
nter_ID_2288752385279320971 < 255) : nd_detected_inoff;   

28.         (_current_state = off_ID_2288752385279320980) & (in__toggle__present_ID_2288
752385279320977 = TRUE) & (lv__onCounter_ID_2288752385279320971 < 255) & (lv__onCoun
ter_ID_2288752385279320971 >= 255) : nd_detected_inoff;   

29.         (_current_state = on_ID_2288752385279320992) & (in__dimDown__present_ID_2288
752385279321017 = TRUE) & (lv__brightness_ID_2288752385279321005 > 1) & (lv__brightn
ess_ID_2288752385279321005 <= 1) : nd_detected_inon;   

30.         (_current_state = on_ID_2288752385279320992) & (in__dimDown__present_ID_2288
752385279321017 = TRUE) & (lv__brightness_ID_2288752385279321005 <= 1) & (lv__bright
ness_ID_2288752385279321005 > 1) : nd_detected_inon;   

31.         TRUE : no_nondeterminism;   
32.     esac;   
33.    
34.     init (_dead_transition) := dead_trans_init;   
35.     next (_dead_transition) := case   
36.         (_current_state = off_ID_2288752385279320980) & (in__toggle__present_ID_2288

752385279320977 = TRUE) & (lv__onCounter_ID_2288752385279320971 < 255) : state_off_t
ransition_0_is_dead;   

37.         (_current_state = off_ID_2288752385279320980) & (in__toggle__present_ID_2288
752385279320977 = TRUE) & (lv__onCounter_ID_2288752385279320971 >= 255) : state_off_
transition_1_is_dead;   

38.         (_current_state = on_ID_2288752385279320992) & (in__toggle__present_ID_22887
52385279320977 = TRUE) & (TRUE) : state_on_transition_0_is_dead;   

39.         (_current_state = on_ID_2288752385279320992) & (in__dimDown__present_ID_2288
752385279321017 = TRUE) & (lv__brightness_ID_2288752385279321005 <= 1) : state_on_tr
ansition_1_is_dead;   

40.         (_current_state = on_ID_2288752385279320992) & (in__dimDown__present_ID_2288
752385279321017 = TRUE) & (lv__brightness_ID_2288752385279321005 > 1) : state_on_tra
nsition_2_is_dead;   

41.         (_current_state = on_ID_2288752385279320992) & (in__dimUp__present_ID_228875
2385279321016 = TRUE) & (lv__brightness_ID_2288752385279321005 < 8) : state_on_trans
ition_3_is_dead;   

42.         TRUE : dead_trans_init;   
43.     esac;   
44.    
45.     init (lv__onCounter_ID_2288752385279320971) := 0;   
46.     init (lv__brightness_ID_2288752385279321005) := 5;   
47.     next (lv__onCounter_ID_2288752385279320971) := case   
48.         (_current_state = off_ID_2288752385279320980) & (in__toggle__present_ID_2288

752385279320977 = TRUE) & (lv__onCounter_ID_2288752385279320971 < 255) : lv__onCount
er_ID_2288752385279320971 + 1 < 0 ? -
1 : lv__onCounter_ID_2288752385279320971 + 1 > 255 ? 256 : lv__onCounter_ID_22887523
85279320971 + 1;   

49.         (_current_state = on_ID_2288752385279320992) & (in__dimDown__present_ID_2288
752385279321017 = TRUE) & (lv__brightness_ID_2288752385279321005 > 1) : lv__onCounte
r_ID_2288752385279320971 + 1 < 0 ? -
1 : lv__onCounter_ID_2288752385279320971 + 1 > 255 ? 256 : lv__onCounter_ID_22887523
85279320971 + 1;   

50.         (_current_state = on_ID_2288752385279320992) & (in__dimUp__present_ID_228875
2385279321016 = TRUE) & (lv__brightness_ID_2288752385279321005 < 8) : lv__onCounter_
ID_2288752385279320971 + 1 < 0 ? -
1 : lv__onCounter_ID_2288752385279320971 + 1 > 255 ? 256 : lv__onCounter_ID_22887523
85279320971 + 1;   

51.         !(((_current_state = off_ID_2288752385279320980) & (in__toggle__present_ID_2
288752385279320977 = TRUE) & (lv__onCounter_ID_2288752385279320971 < 255))) & !(((_c
urrent_state = on_ID_2288752385279320992) & (in__dimDown__present_ID_228875238527932
1017 = TRUE) & (lv__brightness_ID_2288752385279321005 > 1))) & !(((_current_state = 
on_ID_2288752385279320992) & (in__dimUp__present_ID_2288752385279321016 = TRUE) & (l
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v__brightness_ID_2288752385279321005 < 8))) : lv__onCounter_ID_2288752385279320971 < 
0 ? -
1 : lv__onCounter_ID_2288752385279320971 > 255 ? 256 : lv__onCounter_ID_228875238527
9320971;   

52.     esac;   
53.    
54.     next (lv__brightness_ID_2288752385279321005) := case   
55.         (_current_state = on_ID_2288752385279320992) & (in__dimDown__present_ID_2288

752385279321017 = TRUE) & (lv__brightness_ID_2288752385279321005 > 1) : lv__brightne
ss_ID_2288752385279321005 - 1 < 1 ? 0 : lv__brightness_ID_2288752385279321005 - 1 > 
8 ? 9 : lv__brightness_ID_2288752385279321005 - 1;   

56.         (_current_state = on_ID_2288752385279320992) & (in__dimUp__present_ID_228875
2385279321016 = TRUE) & (lv__brightness_ID_2288752385279321005 < 8) : lv__brightness
_ID_2288752385279321005 + 1 < 1 ? 0 : lv__brightness_ID_2288752385279321005 + 1 > 8 
? 9 : lv__brightness_ID_2288752385279321005 + 1;   

57.         !(((_current_state = on_ID_2288752385279320992) & (in__dimDown__present_ID_2
288752385279321017 = TRUE) & (lv__brightness_ID_2288752385279321005 > 1))) & !(((_cu
rrent_state = on_ID_2288752385279320992) & (in__dimUp__present_ID_228875238527932101
6 = TRUE) & (lv__brightness_ID_2288752385279321005 < 8))) : lv__brightness_ID_228875
2385279321005 < 1 ? 0 : lv__brightness_ID_2288752385279321005 > 8 ? 9 : lv__brightne
ss_ID_2288752385279321005;   

58.     esac;   
59.    
60.    
61. SPEC    AG _current_state != off_ID_2288752385279320980   
62. --

SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD###State 'off' is reachable | State 'off' is unre
achable   

63.    
64. SPEC    AG _current_state != on_ID_2288752385279320992   
65. --

SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD###State 'on' is reachable | State 'on' is unreac
hable   

66.    
67. SPEC    AG _current_state != servicestate_ID_2288752385279321001   
68. --

SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD###State 'servicestate' is reachable | State 'ser
vicestate' is unreachable   

69.    
70. SPEC    AG (0 <= lv__onCounter_ID_2288752385279320971 & lv__onCounter_ID_22887523852

79320971 <= 255)   
71. --

Variable 'onCounter' is always between its defined bounds | Variable 'onCounter' is 
possibly out of range   

72.    
73. SPEC    AG (1 <= lv__brightness_ID_2288752385279321005 & lv__brightness_ID_228875238

5279321005 <= 8)   
74. --

Variable 'brightness' is always between its defined bounds | Variable 'brightness' i
s possibly out of range   

75.    
76. SPEC    AG _nondeterminism_detector != nd_detected_inoff   
77. --

State 'off' has deterministic transitions | State 'off' contains nondeterministic tr
ansitions   

78.    
79. SPEC    AG _nondeterminism_detector != nd_detected_inon   
80. --

State 'on' has deterministic transitions | State 'on' contains nondeterministic tran
sitions   

81.    
82. SPEC    AG _nondeterminism_detector != nd_detected_inservicestate   
83. --

State 'servicestate' has deterministic transitions | State 'servicestate' contains n
ondeterministic transitions   

84.    
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85. SPEC    AG _dead_transition != state_off_transition_0_is_dead   
86. --

SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD###Transition 0 of state 'off' is not dead | Tran
sition 0 of state 'off' is dead   

87.    
88. SPEC    AG _dead_transition != state_off_transition_1_is_dead   
89. --

SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD###Transition 1 of state 'off' is not dead | Tran
sition 1 of state 'off' is dead   

90.    
91. SPEC    AG _dead_transition != state_on_transition_0_is_dead   
92. --

SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD###Transition 0 of state 'on' is not dead | Trans
ition 0 of state 'on' is dead   

93.    
94. SPEC    AG _dead_transition != state_on_transition_1_is_dead   
95. --

SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD###Transition 1 of state 'on' is not dead | Trans
ition 1 of state 'on' is dead   

96.    
97. SPEC    AG _dead_transition != state_on_transition_2_is_dead   
98. --

SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD###Transition 2 of state 'on' is not dead | Trans
ition 2 of state 'on' is dead   

99.    
100. SPEC    AG _dead_transition != state_on_transition_3_is_dead   
101. --

SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD###Transition 3 of state 'on' is not dead | Trans
ition 3 of state 'on' is dead   

102.    
103. SPEC    AG (EF _current_state = on_ID_2288752385279320992)   
104. --State 'on' is live | State 'on' is not live!   
105.    
106. SPEC    AG (EF _current_state = servicestate_ID_2288752385279321001)   
107. --State 'servicestate' is live | State 'servicestate' is not live!   
108.    
109. LTLSPEC ((F (in__toggle__present_ID_2288752385279320977)) -

> (((!((_current_state = on_ID_2288752385279320992))) U (in__toggle__present_ID_2288
752385279320977))))   

110. --
Condition 'on' is not true before 'toggle' | Condition 'on' can be true before 'togg
le'   

111.    
112.    
113. MODULE main   
114.    
115. VAR    
116.     in__toggle__present_ID_2288752385279320977:boolean;   
117.     in__dimUp__present_ID_2288752385279321016:boolean;   
118.     in__dimDown__present_ID_2288752385279321017:boolean;   
119.     sm:statemachine(in__toggle__present_ID_2288752385279320977,in__dimUp__present_ID

_2288752385279321016,in__dimDown__present_ID_2288752385279321017);   
120.    
121. INVAR   (TRUE & !((in__dimDown__present_ID_2288752385279321017 & in__dimUp__present_

ID_2288752385279321016)) & !((in__dimDown__present_ID_2288752385279321017 & in__togg
le__present_ID_2288752385279320977)) & !((in__dimUp__present_ID_2288752385279321016 
& in__toggle__present_ID_2288752385279320977)) & !((in__toggle__present_ID_228875238
5279320977 & in__dimUp__present_ID_2288752385279321016))) & (FALSE | in__dimDown__pr
esent_ID_2288752385279321017 | in__dimUp__present_ID_2288752385279321016 | in__toggl
e__present_ID_2288752385279320977)   

Listing 17 Generated NuSMV input for LightSwitch 
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