
Model Checking for

State Machines

with mbeddr and NuSMV

1 Abstract

 State machines are a powerful tool for modelling software.

Particularly in the field of embedded software development where

parts of a system can be abstracted as state machine.

Temporal logic languages can be used to formulate desired

behaviour of a state machine. NuSMV allows to automatically

proof whether a state machine complies with properties given as

temporal logic formulas.

mbedder is an integrated development environment for the C

programming language. It enhances C with a special syntax for

state machines. Furthermore, it can automatically translate the

code into the input language for NuSMV. Thus, it is possible to

make use of state-of-the-art mathematical proofing technologies

without the need of error prone and time consuming manual

translation.

This paper gives an introduction to the subject of model checking

state machines and how it can be done with mbeddr. It starts with

an explanation of temporal logic languages. Afterwards, some

features of mbeddr regarding state machines and their verification

are discussed, followed by a short description of how NuSMV

works.

Author: Christoph Rosenberger

Supervising Tutor: Peter Sommerlad

Lecture: Seminar Program Analysis and Transformation

Term: Spring 2013

School: HSR, Hochschule für Technik Rapperswil

Model Checking with mbeddr

2

2 Introduction

Model checking In the words of Cavada et al.: „The main purpose of a model

checker is to verify that a model satisfies a set of desired properties

specified by the user.” [1]

mbeddr As Ratiu et al. state in their paper “Language Engineering as an

Enabler for Incrementally Defined Formal Analyses” [2], the

semantic gap between general purpose programming languages

and input languages for formal verification tools is too big. This

prevents developers from using these verification tools. Their

approach is the use of language engineering techniques. More

abstract domain specific languages should be developed and used.

To make automatic verification feasible, they should be limited to

an automatically analysable subset of the general purpose

language. All this should be possible in one tool to reduce time

consuming and error prone processes and manual transformation.

mbeddr [3] is an IDE built on top of the JetBrains Meta-

Programming System [4] as well as a set of domain specific

language fragments which are integrated into the C language.

Some main features are:

 A C extension which allows a very convenient and good

readable implementation of state machines. Via a

translation for NuSMV the state machines can be analysed

and some behaviour can be proofed mathematically.

 Another C extension for decision tables making the code

more readable than nested if statements. This decision

tables can be checked for completeness and consistency. [5]

 Requirements traces can be used to annotate program

elements to link them with the requirements.

 One can build own extensions to the C language.

An overview over the mbeddr design can be seen in Figure 1.

Figure 1 mbeddr at a glance [6]

Model Checking with mbeddr

3

NuSMV NuSMV [7] is used by mbeddr to analyse state machines. Its

developers Cimatti et al. describe it as follows:

“NuSMV is a symbolic model checker originated from the

reengineering, reimplementation and extension of SMV, the

original BDD-based model checker developed at CMU. The NuSMV

project aims at the development of a state-of-the-art symbolic model

checker, designed to be applicable in technology transfer projects: it

is a well-structured, open, flexible and documented platform for

model checking, and is robust and close to industrial systems

standards.” [8]

Algorithms NuSMV uses the algorithm presented in [9] as the basis for fair

CTL model checking and the algorithm presented in [10] is used to

support LTL model checking [11].

In [10] E. Clarke et al. “show how LTL model checking can be

reduced to CTL model checking with fairness constraints.”

In [9] J. R. Burch et al. „describe a general method that represents

the state space symbolically instead of explicitly.“ The relations

and formulas are represented as Binary decision Diagrams BDDs.

By representing the state space symbolically instead of explicitly,

they found an effective technique for combatting the state

explosion problem. “Often systems with a large number of

components have a regular structure that would suggest a

corresponding regularity in the state graph. Consequently, it may

be possible to find more sophisticated representations of the state

space that exploit this regularity in a way that a simple table of

states cannot. One good candidate for such a symbolic

representation is the binary decision diagram (BDD) (Bryant,

1986), which is widely used in various tools for the design and

analysis of digital circuits. BDDs do not prevent a state explosion

in all cases, but they allow many practical systems with extremely

large state spaces to be verified - systems that would be impossible

to handle with explicit state enumeration methods.”

A short introduction to BDDs is given in the appendix. A further

discussion of the algorithms is beyond the scope of this paper.

Model Checking with mbeddr

4

3 The Mathematical Basis

 Model checking is about proofing. Therefore, a minimal

mathematical background is needed to be able to handle the

subject. This chapter is limited to the languages needed to

formulate the desired properties of a model. This chapter is an

aggregation of a lot of sources: [1] [12] [13] [14] [15] [16] [17] [18]

[19] [20] [21] [22].

3.1 Temporal Logic

Predicate logic Predicate logic allows statements like “All lights are turned on” or

“The light is dimmed down or the light is turned off”. These are

general statements about a system without any reference to time.

The well-known operators are [22]:

 existential quantifier ∃

 universal quantifier ∀

 negation ¬

 conjunction ∧

 disjunction ∨

 implication →

 biconditional ↔

Temporal logic Temporal logic is an extension to the predicate logic. It allows to

refer to a system in different states at different times. One could

make statements like “The light is turned on until the light switch

is toggled”.

3.2 Linear Temporal Logic LTL

 With linear temporal logic LTL properties of a system can be

described. In LTL a system is understood as a linear sequence of

states the system can be in. Different system runs produce a

different sequence of occupied states; in LTL a statement always

refers to all possible sequences.

Operators LTL provides the following operators:

 X: Refers to the next state. E.g., X ‘the light is off’ states

that in the state following to the actual state, the light will

be off.

 G: Implies a global statement. E.g., G ‘the light is off’

denote that the light will be off in all upcoming states.

 F: Tells that a statement will finally be true. It doesn’t tell

when this will happen. E.g., F ‘the light bulb is broken’ tells

that somewhere in the future the light bulb will be broken.

 U: Until is a binary operator stating that a statement holds

at least until another statement holds. E.g., ‘the light

doesn’t shine’ U ‘the light switch is turned on’. In other

words: It is sure that the light doesn’t shine until the light

switch is turned on. After the light switch is turned on, the

light can either shine or, if the light bulb is broken, it will

not shine.

Model Checking with mbeddr

5

 R: The Release operator states that a statement holds until

and including a state in which another statement will hold.

Under the assumption that while mounting a light bulb, the

light switch is turned off, the following example could be

made: ‘the light doesn’t shine’ R ‘the light bulb is mounted’.

This means that there isn’t light until the light bulb is

mounted. In the first state after the mounting there isn’t

any light, because there is no power. This operator also

supports the possibility that the second state never occurs.

E.g., the light bulb will never be mounted and thus the light

will never shine.

The essential difference between p U q and p R q is at the

transition between p and q: U tells, that p holds until but

not necessarily including the first state where q holds. R

requires that there is at least one state where both p and q

hold.

3.3 Computation Tree Logic CTL

 CTL is a branching time logic. The future states of a system are

not determined yet and thus different evolutions are possible. This

can be thought off as a branching tree where each branch stands

for an alternative state transition. In CTL you can make

statements that indicate a statement for at least one further

development or for all further developments.

Quantifiers over

paths

 Two additional quantifiers exist:

 A: Is used for a statement that holds in all paths.

 E: States that at least one path exists with a given

property.

There is a difference between ∀ and A, respectively between ∃ and

E. The quantifiers of the predicate logic refer to the objects at one

time. The path quantifiers of the CTL refer to states of the

following paths. E.g., ∃ ‘a light that doesn’t shine’ states, that there

is at least one light that does not shine at the moment. There is no

connotation to the future or the past. EG ‘the light doesn’t shine’

states that there is at least one possible evolution where the light

will never shine. So this is only a statement of the further

development of the system.

Path-specific

quantifiers

 To build a statement the same operators as in LTL are used.

(Except the R operator. But this is not a restriction: For two

expressions p and q, R can be simulated with “¬ (¬p U ¬q)”).

Legal statements In CTL a legal statement is always composed of a quantifier over

paths and a path-specific quantifier. Legal examples are:

 AX ‘the light doesn’t shine’: All possible next steps lead to a

state where the light doesn’t shine.

 EX ‘the light doesn’t shine’: At least one next step leads to a

state where the light doesn’t shine.

Model Checking with mbeddr

6

 EG ‘the light doesn’t shine’: There is at least one possible

evolution where the light will never shine. (Could be true if

the light bulb is broken.)

 AG ‘the light doesn’t shine’ U ‘the light switch is turned on’:

In all possible evolutions the light will not shine until the

light switch is turned on.

 EF ‘the light bulb is broken’: At least one immediate

transition exists after which the light bulb will be broken.

3.4 CTL*

CTL* CTL and LTL are not identical although the expression power has

some common possibilities. Neither is CTL a subset of LTL nor is it

a superset. Thus, CTL* is defined which is a combination of CTL

and LTL.

Difference

between CTL

and LTL

 The most obvious difference between CTL and LTL originates in

the different rules using the A and E quantifiers: While in CTL

every expression must have one, LTL doesn’t even know these

symbols. LTL formulas always refer to all possible system runs.

But the approach of translating an LTL formula to a CTL formula

by adding an A quantifier in front of each clause will fail. This will

be shown later on. The actual difference between these two

languages lies in the semantic and the way a system run is

thought of.

A LTL formula makes a statement about all possible paths the

system could run through. One single path is an infinite linear

sequence of states the system could run through. Figure 2 shows a

visualization of this mind model.

A CTL formula makes a statement about all possible states a

system could be in. From the most states the system has different

branches of possible evolutions. This mind model is visualized in

Figure 3. While looking at one single state in the system run, a

CTL formula makes a statement about all possible further

developments. While the A quantifier requires a property to hold in

all branches, the E quantifier only requires the property to hold in

one of them.

Figure 2 Visualization of a system run

in LTL [17]

 Figure 3 Visualization of a system run

in CTL [20]

Model Checking with mbeddr

7

Example

statement only

expressible in

LTL

 The following example refers to the state diagram shown in Figure

4. The system has three states: a, b and c. From a it can either loop

back to a or change over to b. From b it can only go further to c.

And from c it can only loop back to c. Basically there are two

distinct system evolutions. Either the system loops forever in state

a. Or it eventually changes over to b and afterwards to c, where it

will loop forever.

The LTL formula

FG(“the system is in state a” ∨ “the system is in state c”)

states that in all possible system runs, the system will eventually

reach a point after which it loops forever in state a or in state c. In

other words (adapted from [12]): Every path has a finite prefix

after which the property “the system is in state a” ∨ “the system is

in state c” is always true.

This statement can’t be translated to CTL. The approach of adding

an A quantifier in front of each clause fails. The formula

AF(AG(“the system is in state a” ∨ “the system is in state c”))

would be too strict. It states that eventually it will hold that in all

further branches the system can’t reach the state b anymore. This

statement is false. In the system run which loops in a forever,

there is always a branch where the system could change over to b.

Figure 4 Example state diagram

Example

statement only

expressible in

CTL

 This example also refers to the state diagram shown in Figure 4.

The CTL formula

AG(“the system is in state a” → (EF “the system is in state c”))

states that “On all branches it holds globally that: After being in

state a, there is a possible further evolution which eventually

reaches state c.”

One naïve approach to translate this formula to LTL would be to

omit the path quantifiers A and E. This would lead to the formula

G(“the system is in state a” → (F “the system is in state c”)).

This statement is false. In the system run where the system loops

in state a forever, the system will never reach state c. LTL can only

make statements which have to hold in every system run. Neither

is it possible to make a statement which only holds in some system

runs, nor is it possible to make a statement about possible

alternative developments.

Model Checking with mbeddr

8

3.5 CTL* in mbeddr

 The correct usage of CTL* expressions can be quite cumbersome.

To facilitate writing correct checks, mbeddr provides a set of

specification patterns. This patterns are based on CTL*

expressions. Their description can be found on a website that is a

“home of an online repository for information about property

specification for finite-state verification” [23]. This is further

discussed in chapter 4.5.2.

Model Checking with mbeddr

9

4 State Machines in mbeddr

 In this chapter the handling of state machines in mbeddr is

discussed on the basis of the LightSwitch example. First different

representations of the LightSwitch are discussed, afterwards the

possibilities to ensure the correctness of the implementation are

shown: Unit testing and symbolic model checking. And last some

further state machine modelling options provided by mbeddr are

demonstrated.

LightSwitch For this paper a simple model of a light switch was developed. It

will be used throughout this paper. There are three states:

 off: In the State off the light is turned off. The LightSwitch

doesn’t react to dimUp and dimDown events. On toggle it

will go to the on state except the

SERVICESTATE_THRESHOLD is reached, then it goes

into the servicestate state.

 on: In the State on the light is on. The brightness can be

regulated with dimUp and dimDown. If the light is dimmed

to dark, the LightSwitch turns off. If the light is too bright,

it can’t be turned any brighter.

 servicestate: If the LightSwitch is in the servicestate it

doesn’t react to any further inputs.

4.1 Graphical Representation of a State Model

Figure 5 Graphical representation of the LightSwitch State Model

Model Checking with mbeddr

10

Graphical

representation

 mbeddr is able to generate graphical representations of a state

machine. The guards for the transitions can be shown as in the

example above, or there is the choice to not show them.

Unfortunately, only very short variable names can be handled

correctly. Only a fragment will be shown if the variable name is too

long. (The “_THRESHOLD” variable is actually called

SERVICESTATE_THRESHOLD).

4.2 State Model DSL in mbeddr

 In mbeddr there is a C extension for state machines. This allows to

specify a state machine in a very convenient and readable way.

Some of the language is explained in this chapter. Listing 1 shows

the implementation of the LightSwitch example.

1. #define SERVICESTATE_THRESHOLD = 255;
2. #define MIN_BRIGHTNESS = 1;
3. #define MAX_BRIGHTNESS = 8;
4. #define BRIGHTNESS_START = 5;
5.
6. [verifiable]
7. statemachine LightSwitch initial = off {
8. var bounded_int[0..SERVICESTATE_THRESHOLD] onCounter = 0
9. readable var bounded_int[MIN_BRIGHTNESS..MAX_BRIGHTNESS] brightness = BRIGHTNESS_START
10.
11. in toggle() <no binding>
12. in dimUp() <no binding>
13. in dimDown() <no binding>
14.
15. state off {
16. on toggle [onCounter < SERVICESTATE_THRESHOLD] -> on
17. on toggle [onCounter >= SERVICESTATE_THRESHOLD] -> servicestate
18. } state off
19.
20. state on {
21. entry { ++onCounter; }
22. on toggle [] -> off
23. on dimDown [brightness <= MIN_BRIGHTNESS] -> off
24. on dimDown [brightness > MIN_BRIGHTNESS] -> on { --brightness; }
25. on dimUp [brightness < MAX_BRIGHTNESS] -> on { ++brightness; }
26. } state on
27.
28. state servicestate {
29.
30. } state servicestate
31. }

Listing 1 LightSwitch state machine

[verifiable]

(line 6)

 The keyword [verifiable] declares this state machine to be

verifiable with the integrated model checker. Only a subset of the

possibilities provided by the state machine construct can be used.

Some restrictions are:

 “Data types: all local variables, arguments of input or

output events should have as type one of the following

types: enumeration, boolean, int8, int16, int32 and

bounded_int. In particular, we do not support floats or

structs.” [24] (Page 270)

Model Checking with mbeddr

11

 “No access to global state: accessing global variables or

calling global functions is not allowed. Mapping out-events

to arbitrary functions is legal, though.” [24] (Page 270)

 “Single assignment actions: in each effective action executed

as a consequence of an event (i.e., exit action of the current

state + transition action + entry action of the target state), a

variable can be assigned only once.” [24] (Page 270)

 No composite states are allowed. (For an example of a

composite state see chapter 4.6)

bounded_int

(line 8)

 In the LightSwitch example it would be possible to model all eight

dim-levels as separate states. Variables are a convenient way to

make scalable models. For the model checker the way of modelling

these states doesn’t change the fact, that all states have to be

checked. So limiting the possible values of a variable has a big

impact on the time needed for the verification.

Furthermore, by declaring the exact domain of definition, the

checking algorithm has much more information to verify the

model.

readable var

(line 9)

 With the readable keyword a variable can be read from outside the

state machine. Otherwise the value of variable is encapsulated

inside the state machine.

in

(line 11)

 The events that the state machine can receive are declared with

the in keyword.

state

(line 15)

 The state keyword marks the beginning of a state definition.

entry

(line 21)

 The commands that will be executed when entering a state are

listed after the entry keyword.

on

(line 16)

 The desired transitions after an event are stated after the on

keyword. Guards to restrict the transition can be specified in

brackets.

4.3 Translation to C-Code

 This chapter discusses the mapping from the mbeddr

representation of the state machine to C-Code. For better

readability some function and variable names were modified. The

complete and unmodified Code can be found in the appendix. The

mapping of the state machines states and input as well as the type

for keeping the current state are shown in Listing 2 and Listing 3.

Listing 4 and Listing 5 show the code for initializing and running

the state machine.

Model Checking with mbeddr

12

Data structure The current state and the values of the variables are administrated

in a struct as seen in Listing 2.

1. struct sm_data_LightSwitch {
2. sm_states_LightSwitch __currentState;
3. uint8_t onCounter;
4. uint8_t brightness;
5. };

Listing 2 struct LightSwitch

Events and

states

 Enumerations are generated to label the possible events and the

states. This enumerations are shown in Listing 3.

1. typedef enum sm_events_LightSwitch{
2. event_toggle,
3. event_dimUp,
4. event_dimDown
5. } sm_events_LightSwitch;
6.
7. typedef enum sm_states_LightSwitch{
8. off__state,
9. on__state,
10. servicestate__state
11. } sm_states_LightSwitch;

Listing 3 Enumerations for events and states

Initialisation Listing 4 shows how the init method sets the initial state and

values.

1. void sm_init_LightSwitch(

 struct sm_data_LightSwitch* instance)
2. {
3. instance->__currentState = off__state;
4. instance->onCounter = 0;
5. instance->brightness = MAIN_BRIGHTNESS_START;
6. }

Listing 4 LightSwitch initialisation

Model Checking with mbeddr

13

Transition logic The sm_execute_LightSwitch method shown in Listing 5 handles

all the logic of the state machine. The transition which has to be

made is determined by two nested switch statements for the

current state and the event, followed by if-statements to check the

guard conditions. In the following block follows the actual

transition logic: The new state is assigned and the entry actions for

the new state are executed.

1. void sm_execute_LightSwitch(

 struct sm_data_LightSwitch* instance,
 sm_events_LightSwitch event,
 void** arguments)

2. {
3. switch (instance->__currentState)
4. {
5. case off__state: {
6. switch (event)
7. {
8. case event_toggle: {
9. if (instance->onCounter < SERVICESTATE_THRESHOLD)
10. {
11. // switch state
12. instance->__currentState = on__state;
13. // entry actions
14. ++instance->onCounter;
15. return ;
16. }
17. if (instance->onCounter >= SERVICESTATE_THRESHOLD)
18. {
19. // removed
20. }
21. break;
22. }
23. }
24. break;
25. }
26. case on__state:
27. {
28. // removed
29. }
30. case servicestate__state:
31. {
32. // removed
33. }
34. }
35. }

Listing 5 Transition logic

Usage in code While the generated code can be read and understood quite easy,

the use of the somewhat long function, typedef and enum names

could be quite cumbersome. To facilitate the use of state machines,

mbeddr provides specialised syntax. Thereby, all the

implementation details remain behind the scene. The handling of a

state machine is discussed in the next chapter.

4.4 Unit Testing a State Model

 mbeddr extends the C-language with unit tests. This facilitates

writing unit tests. For this chapter two unit tests were written to

show the special syntax provided for unit tests as well as to show

how to address a state machine in C code.

Model Checking with mbeddr

14

Code listing

Listing 6 Unit tests for LightSwitch

testToggle

(line 6)

 testToggle sends a toggle event to the lightSwitch and checks

whether the reached state is on. Then it sends another toggle event

and checks whether the reached state is off.

testDimDown

(line 15)

 The second test case is a bit large and tests different behaviours in

the context of dimDown. At line 20 the initial value of

lightSwitch.brightness is checked. The loop starting at line 21 dims

the lightSwitch several times so that the minimal brightness is

reached. (Note that a while loop checking whether

lightSwitch.brightness != MIN_BRIGHTNESS would not be a good

choice: You wouldn’t test how many times you have to dimDown

until the minimal brightness is reached.) At line 25 a final

dimDown event is sent and at line 26 it is asserted that this leads

to the off state.

General unit

testing syntax

 mbeddr provides several syntax elements to support unit tests.

 At line 2 and 3 the test cases are called with the test

command. The test cases well-arranged in big brackets.

 For declaring a test case the first level language element

“test case” (line 6) is provided. This brands a function

clearly as a unit test function.

 The assert statement (line 19) is to formulate the checks.

The number in the brackets can be used to refer to a assert

statement within a test. If one check fails it eases to find

the failing test.

Unit testing

state machines

 A special syntax element for unit testing a state machine exists:

test state machine (line 9 – 12). With this statement a sequence of

events can be listed together with the expected following states.

More complex sequences or tests which access variables of the

Model Checking with mbeddr

15

state machine can be written with conventional code as in

testDimDown.

Handling a state

machine

 mbeddr provides three functions to handle a state machine. This

functions are not specific to unit testing but can also be used in

normal C code.

 sminit (line 17): Initialises the state machine in the initial

state and the default values for the variables.

 smtrigger (line 18): Sends an event to the state machine.

 smIsInState (line 19): Checks weather the state machine is

in the desired state.

The readable variables of the state machine can be accessed like a

member of an object in most object oriented languages (line 20).

4.5 Symbolic Model Checking

 Besides the many strong points, unit tests have one intrinsic down

side: The only check particular cases. This is the strength of

symbolic model checking: It provides a mathematical proof that a

property holds in all possible program runs.

mbeddr not only allows to specify specific checks for a state

machine, but also brings default checks suitable for all state

machines.

4.5.1 Default Checks

 mbeddr provides four different default checks which don’t have to

be implemented by the user [24]. Figure 6 shows the check results

for the LightSwitch. It can be seen that the variable onCounter can

possibly be out of range after 257 events. Figure 7 shows the last

few events of the trace triggering the bug.

Figure 6 Result of default checks

Unreachable

States

 It is checked for all states if they can be reached. If a state is

unreachable under any circumstances, it would be dead code and

could be removed. The question is whether the state is not needed

or if there is a bug in the state model preventing the state to be

reached.

Model Checking with mbeddr

16

Variable bounds For the variables with bounds it is checked whether its bounds

hold or if there is a way to bring its values out of its domain. In the

LightSwitch example the bound for the variable onCounter is

violated. The reason for this will be discussed further down.

Nondeterministic

Transitions

 All transitions should be deterministic. I.e., if a state can have

several successors for the same event, the guards should

unambiguously define which transition is to take.

If this rule is not obeyed, the state machine is still deterministic in

mbeddr, because it implements guards with consecutive if

statements. The first transition with a fulfilled guard is taken.

Not-fireable

Transitions

 It is analysed whether all transitions can be fired or not. A

transition that can’t ever be fired is dead code and the user should

check if it can be removed or if there is a bug preventing the

transition from being fired.

Counter example If a check fails, mbeddr provides an example how a condition can

be violated. The trace shows as one block the state the system

under test is in, the values of all variables and the ‘in’-event that

will fire next. E.g., on the first four lines of Figure 7 one can see

that the LightSwitch is in state on, the onCounter has the value

251, brightness is 1 and the next ‘in’-event will be dimUp.

Figure 7 Counter example for range check of variable

'onCounter'

As seen in Figure 6 the onCounter of the LightSwitch can get out

of its defined range. The trace size for the counter example is 257

events long. For the understanding why the onCounter can get out

of range the last few iterations are enough. One can see that each

time dimUp or dimDown is fired, the onCounter is incremented.

But the check whether the onCounter has reached the

SERVICESTATE_THRESHOLD is implemented at the exit of the

off state. The semantic of the variable name ‘onCounter’ indicates

that it should only be increased when turning the light on. So this

Model Checking with mbeddr

17

is clearly a bug. An improved LightSwitch where this bug is

eliminated can be seen in chapter 4.6.

4.5.2 Manual Analyses

 Further analyses can be formulated manually. The available

patterns to formulate the desired properties are listed in Figure 8.

The specification patterns mbeddr relies on [24], can be found on a

website that is a “home of an online repository for information

about property specification for finite-state verification” [23]. CTL

as well as LTL based expressions are supported.

In this chapter two patterns are exemplified. Listing 7 shows how

this two patterns are applied to check the LightSwitch.

Figure 8 Available expressions for defining checks

always

eventually

reachable

 This pattern allows to check, if a state remains reachable in any

cases or if a sequence of events exists after which a state isn’t

reachable anymore. E.g., the on state is not live, so the check

‘always eventually reachable on’ will fail. Once fallen into the

servicestate, the on state can’t be reached any more. On the other

hand, the servicestate is live. From every possible state the state

machine can be in, the servicestate remains reachable.

P is false Before

R

 This pattern checks whether a condition P can be true before R

happens. Line 4 in Listing 7 says that state on can’t be reached

without ever toggling the light switch.

Listing 7 Example checks for LightSwitch

Model Checking with mbeddr

18

4.6 Further Possibilities

 This chapter shows some further possibilities that one has for

modelling state machines in mbeddr. Therefore, the LightSwitch

example is enhanced to a second version: The bug found in chapter

4.5.1 is corrected by using a composite state, the dim functions can

now handle a parameter and C functions are called which could

address a device driver. The graphical representation of the

LightSwicht2 can be seen in Figure 9 and the actual

implementation is listed in Listing 8.

Figure 9 Graphical representation of the LightSwitch2 State Model

composite state

(line 18)

 With a composite state a hierarchical state machine can be built. A

composite state has sub states. In the example the on state has the

sub state dimmable which is used to handle the dimUp and

dimDown events without leaving and re-entering the on state.

Therefore, the bug found in the original LightSwitch is mended.

This construct unfortunately prevents the state machine from

being model checked.

events with

parameters

(line 6 & 24)

 Events can have parameters. LightSwitch2 can change the

brightness several steps with one call dimUp or dimDown. The

value of the parameter can be used in the guard condition as well

as in the action. This can be seen on line 24 where the delta first is

used to determine whether this transition should fire and if so how

to calculate the new brightness.

out events

(line 9, 22 & 35)

 When developing for embedded systems, a state machine is usually

an abstraction of a real world device. Thus, the state machine

doesn’t only need to manage the state and the transitions but also

has to provoke the calls to the right functions of the device drivers.

Model Checking with mbeddr

19

On line 9 and 10 the out events are declared and bound to C

functions outside of the state machine. The dependency of the state

machine to other code is limited to one place. And furthermore,

this still allows to model check the state machine.

On line 22 the send statement is used to call the C function. And of

course there has to be a corresponding function that could make a

call to a device driver, as seen on line 35.

Listing 8 Code for the LightSwitch2 state machine

Model Checking with mbeddr

20

5 NuSMV

 mbeddr doesn’t do the model checking itself but delegates this to

the NuSMV model checker. The collaboration works by generating

an input file for NuSMV and after the checks parsing the output.

This chapter discusses the input to NuSMV that mbeddr generates

to analyse the LightSwitch state machine with the checks shown in

chapter 4.5. For better readability, the variable names are shorted

in this chapter. The complete original code can be found in the

appendix.

5.1 LightSwitch Definition

 This chapter discusses how the implementation of the actual model

is generated by mbeddr. Listing 9 shows the code. As said before,

for better readability the variable names are shorted.

Variable

declaration

(lines 1 – 4)

 The state machine variables onCounter and brightness are

declared on lines 2 and 3. The range for the NuSMV model is

extended by one at the lower bound as well as at the upper bound.

This is essential for the range checks.

For managing the current state a variable _current_state is

defined at line 4: This is an enumeration with all states of the

LightSwitch.

State transitions

(lines 7 – 16)

 The next section handles the state transitions. On line 7 the initial

state is set. The lines 8 to 15 define the transition conditions

including the guards. The pattern is to first check the current

state, then check the fired event and last check if the guards let us

through. The last transition on line 15 doesn’t change the current

state: It assures that there is always a transition to take. Thus, it

takes all the conditions checked above and negates them.

onCounter

(lines 18 – 24)

 Each variable needs a separate block for keeping track of its value

changes. First the initial value for the onCounter is set on line 18.

For the actual calculation of the next value pretty much the same

pattern is used as for the state transitions: First the current state

is checked, then the fired event and last the guards are calculated.

In contrast to the states, the new value for the onCounter must be

calculated and the bounds have to be checked before the new value

can be assigned. This makes the second part of the lines 20 – 23.

First the range of the value has to be assured: Thus, it is checked if

the new value violates the lower or the upper bound. If the new

value is ok it is assigned to the variable. The onCounter has a

declared range that begins at -1, one under the lower bound, and

ends at 256, one above the upper bound. These extra values are

used if the onCounter violates its bounds. Hence, it will later be

easy to formulate the bound checks.

brightness

(lines 26 – 31)

 For the brightness the same algorithm is used as for the

onCounter.

Model Checking with mbeddr

21

1. VAR
2. v_onCounter:-1..256;
3. v_brightness:0..9;
4. _current_state:{off,on,servicestate};
5.
6. ASSIGN
7. init (_current_state) := off;
8. next (_current_state) := case
9. (_current_state = off) & (in_toggle = TRUE) & (v_onCounter < 255) : on;
10. (_current_state = off) & (in_toggle = TRUE) & (v_onCounter >= 255) : servicestate;
11. (_current_state = on) & (in_toggle = TRUE) : off;
12. (_current_state = on) & (in_dimDown = TRUE) & (v_brightness <= 1) : off;
13. (_current_state = on) & (in_dimDown = TRUE) & (v_brightness > 1) : on;
14. (_current_state = on) & (in_dimUp = TRUE) & (v_brightness < 8) : on;
15. !(((_current_state = off) & (in_toggle = TRUE) & (v_onCounter < 255)))

 & !(((_current_state = off) & (in_toggle = TRUE) & (v_onCounter >= 255)))
 & !(((_current_state = on) & (in_toggle = TRUE))) & !(((_current_state = on)
 & (in_dimDown = TRUE) & (v_brightness <= 1))) & !(((_current_state = on)
 & (in_dimDown = TRUE) & (v_brightness > 1))) & !(((_current_state = on)
 & (in_dimUp = TRUE) & (v_brightness < 8))) : _current_state;

16. esac;
17.
18. init (v_onCounter) := 0;
19. next (v_onCounter) := case
20. (_current_state = off) & (in_toggle = TRUE) & (v_onCounter < 255) :

 v_onCounter + 1 < 0 ? -1 : v_onCounter + 1 > 255 ? 256 : v_onCounter + 1;
21. (_current_state = on) & (in_dimDown = TRUE) & (v_brightness > 1) :

 v_onCounter + 1 < 0 ? -1 : v_onCounter + 1 > 255 ? 256 : v_onCounter + 1;
22. (_current_state = on) & (in_dimUp = TRUE) & (v_brightness < 8) :

 v_onCounter + 1 < 0 ? -1 : v_onCounter + 1 > 255 ? 256 : v_onCounter + 1;
23. !(((_current_state = off) & (in_toggle = TRUE) & (v_onCounter < 255)))

 & !(((_current_state = on) & (in_dimDown = TRUE) & (v_brightness > 1)))
 & !(((_current_state = on) & (in_dimUp = TRUE) & (v_brightness < 8))) :
 v_onCounter < 0 ? -1 : v_onCounter > 255 ? 256 : v_onCounter;

24. esac;
25.
26. init (v_brightness) := 5;
27. next (v_brightness) := case
28. (_current_state = on) & (in_dimDown = TRUE) & (v_brightness > 1) :

 v_brightness - 1 < 1 ? 0 : v_brightness - 1 > 8 ? 9 : v_brightness - 1;
29. (_current_state = on) & (in_dimUp = TRUE) & (v_brightness < 8) :

 v_brightness + 1 < 1 ? 0 : v_brightness + 1 > 8 ? 9 : v_brightness + 1;
30. !(((_current_state = on) & (in_dimDown = TRUE) & (v_brightness > 1)))

 & !(((_current_state = on) & (in_dimUp = TRUE) & (v_brightness < 8))) :
 v_brightness < 1 ? 0 : v_brightness > 8 ? 9 : v_brightness;

31. esac;

Listing 9 LightSwitch implementation for NuSMV (generated by mbeddr)

5.2 Automatic Checks

 In this chapter the automatically provable assertions are

discussed.

Reachability

checks

 The reachability checks seen in Listing 10 assert that all states are

reachable, i.e., there are no dead states. For the reachability check

a CTL formula is used. Line 1 says “In all possible system runs it is

true in every state that the current state is not the off state”.

Therefore, if this NuSMV check fails we have the success scenario

of the mbeddr reachability check. On line 2 the text is defined

which will be used in mbeddr to describe the outcome of the check.

Model Checking with mbeddr

22

1. SPEC AG _current_state != off
2. --SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD###

 State 'off' is reachable | State 'off' is unreachable
3.
4. SPEC AG _current_state != on
5. --SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD###

 State 'on' is reachable | State 'on' is unreachable
6.
7. SPEC AG _current_state != servicestate
8. --SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD###

 State 'servicestate' is reachable | State 'servicestate' is unreachable

Listing 10 NuSMV reachability checks (generated by mbeddr)

Range checks The range checks make sure that variables will stick to their

bounds. Line 1 in Listing 11 says “In all possible evolutions and in

all states onCounter will be bigger or equal to 0 and smaller or

equal to 255”. 0 and 255 are de bounds defined for the variable

onCounter.

1. SPEC AG (0 <= v_onCounter & v_onCounter <= 255)
2. --Variable 'onCounter' is always between its defined bounds

 | Variable 'onCounter' is possibly out of range
3.
4. SPEC AG (1 <= v_brightness & v_brightness <= 8)
5. --Variable 'brightness' is always between its defined bounds

 | Variable 'brightness' is possibly out of range

Listing 11 NuSMV range checks (generated by mbeddr)

Determinism

checks

 The nondeterminism checks assert that all transitions are

deterministic, i.e., the state machine doesn’t allow two transitions

to fire at the same time. Listing 12 shows how the model for the

NuSMV state machine is enhanced with an additional variable and

its transitions.

The variable on line 2 is an enumeration with four possible values:

 no_nondeterminism states that no nondeterminism was

found

 nd_detected_inoff states that in state off a nondeterministic

transition is found

 nd_detected_inon states that in state on a nondeterministic

transition is found

 nd_detected_inservicestate state that in the servicestate a

nondeterministic transition is found.

At line 5 the transitions for the nondeterminism checks begin with

the initialisation of the nondeterminism detector variable.

Afterwards, for each state that can react to an event with different

transitions it is checked, whether the guards are distinct or not.

This is achieved by making checks where the guards are checked

in a pairwise conjunction. E.g., the state off can react to the event

toggle by going into the on state if the onCounter is smaller than

255 or by going into the servicestate if the onCounter is 255 or

bigger. Thus, these to conditions are put into a conjunction

(together with the prerequisite that the state machine actually is

in the off state and the toggle event is fired). If this conjunction can

Model Checking with mbeddr

23

be true, a non-deterministic transition would exist (what obviously

isn’t the case in this scenario).

For three different transitions from one state to one event, six

check cases would be formulated, etc. As a conjunction is

commutative, this are more checks than actually needed. But it

generates the desired output.

This groundwork provided the actual check conditions can be

formulated in trivial CTL statements, like on line 14: In all

possible evolutions on all states the nondeterminism detector

variable never is in the state which indicates a nondeterministic

transition.

1. VAR
2. _nondeterminism_detector:{no_nondeterminism,nd_detected_inoff,

 nd_detected_inon,nd_detected_inservicestate};
3.
4. ASSIGN
5. init (_nondeterminism_detector) := no_nondeterminism;
6. next (_nondeterminism_detector) := case
7. (_current_state = off) & (in_toggle = TRUE) & (v_onCounter >= 255)

 & (v_onCounter < 255) : nd_detected_inoff;
8. (_current_state = off) & (in_toggle = TRUE) & (v_onCounter < 255)

 & (v_onCounter >= 255) : nd_detected_inoff;
9. (_current_state = on) & (in_dimDown = TRUE) & (v_brightness > 1)

 & (v_brightness <= 1) : nd_detected_inon;
10. (_current_state = on) & (in_dimDown = TRUE) & (v_brightness <= 1)

 & (v_brightness > 1) : nd_detected_inon;
11. TRUE : no_nondeterminism;
12. esac;
13.
14. SPEC AG _nondeterminism_detector != nd_detected_inoff
15. --State 'off' has deterministic transitions

 | State 'off' contains nondeterministic transitions
16.
17. SPEC AG _nondeterminism_detector != nd_detected_inon
18. --State 'on' has deterministic transitions

 | State 'on' contains nondeterministic transitions
19.
20. SPEC AG _nondeterminism_detector != nd_detected_inservicestate
21. --State 'servicestate' has deterministic transitions

 | State 'servicestate' contains nondeterministic transitions

Listing 12 NuSMV determinism checks (generated by mbeddr)

Dead transition

checks

 The dead transition checks, listed in Listing 13, assert that all

transitions can be fired. For these checks the model for the NuSMV

state machine is enhanced with an additional variable and its

transitions.

The variable _dead_transition is an enumeration. Beside an initial

value, every value can indicate whether the according transition is

dead or not.

The names of the values are a bit misleading: If the variable

_dead_transition can have e.g. the value

state_off_transition_0_is_dead this indicates that the first

transition of the off state is not dead.

Model Checking with mbeddr

24

For every transition in the LightSwitch state machine one

according transition for the _dead_transition variable is defined.

As in all other checks the first to parts of the conjunction is to

check the state-event combination. In the third argument the

guard is checked. E.g., on line 7 it is checked whether the

transition from the off state to the on state fired on the toggle

event can actually be fired, or if the guard always is false.

The groundwork for this check is done in the transition logic. So

the CTL check conditions are quite trivial. It is checked that in all

possible evolutions in all states the _dead_transition variable

never has another value than dead_trans_init. Therefore, on lines

16 to 32 for every other value of the enumeration a check case is

specified which asserts that the _dead_transition variable can’t

ever have that value.

1. VAR
2. _dead_transition:{dead_trans_init,state_off_transition_0_is_dead,

 state_off_transition_1_is_dead,state_on_transition_0_is_dead,
 state_on_transition_1_is_dead,state_on_transition_2_is_dead,
 state_on_transition_3_is_dead};

3.
4. ASSIGN
5. init (_dead_transition) := dead_trans_init;
6. next (_dead_transition) := case
7. (_current_state = off) & (in_toggle = TRUE) & (v_onCounter < 255) :

 state_off_transition_0_is_dead;
8. (_current_state = off) & (in_toggle = TRUE) & (v_onCounter >= 255) :

 state_off_transition_1_is_dead;
9. (_current_state = on) & (in_toggle = TRUE) & (TRUE) :

 state_on_transition_0_is_dead;
10. (_current_state = on) & (in_dimDown = TRUE) & (v_brightness <= 1) :

 state_on_transition_1_is_dead;
11. (_current_state = on) & (in_dimDown = TRUE) & (v_brightness > 1) :

 state_on_transition_2_is_dead;
12. (_current_state = on) & (in_dimUp = TRUE) & (v_brightness < 8) :

 state_on_transition_3_is_dead;
13. TRUE : dead_trans_init;
14. esac;
15.
16. SPEC AG _dead_transition != state_off_transition_0_is_dead
17. --SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD###

 Transition 0 of state 'off' is not dead | Transition 0 of state 'off' is dead
18.
19. SPEC AG _dead_transition != state_off_transition_1_is_dead
20. --SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD###

 Transition 1 of state 'off' is not dead | Transition 1 of state 'off' is dead
21.
22. SPEC AG _dead_transition != state_on_transition_0_is_dead
23. --SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD###

 Transition 0 of state 'on' is not dead | Transition 0 of state 'on' is dead
24.
25. SPEC AG _dead_transition != state_on_transition_1_is_dead
26. --SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD###

 Transition 1 of state 'on' is not dead | Transition 1 of state 'on' is dead
27.
28. SPEC AG _dead_transition != state_on_transition_2_is_dead
29. --SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD###

 Transition 2 of state 'on' is not dead | Transition 2 of state 'on' is dead
30.

Model Checking with mbeddr

25

31. SPEC AG _dead_transition != state_on_transition_3_is_dead
32. --SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD###

 Transition 3 of state 'on' is not dead | Transition 3 of state 'on' is dead

Listing 13 NuSMV dead transition checks (generated by mbeddr)

5.3 Manual Checks

 In this chapter the translation of the manually formulated checks

to NuSMV input is explained.

Liveness checks To assure that a state is live, i.e., in every evolution of the state

machine it remains reachable, the following CTL statement is

checked: In all evolutions in every state it is true that: In at least

one further evolution finally the desired state can be reached. The

corresponding NuSMV code is listed in Listing 14.

1. SPEC AG (EF _current_state = on)
2. --State 'on' is live | State 'on' is not live!
3.
4. SPEC AG (EF _current_state = servicestate)
5. --State 'servicestate' is live | State 'servicestate' is not live!

Listing 14 NuSMV liveness checks (generated by mbeddr)

P is false

before R

 As seen in Listing 7, it is checked if the state on is not reached

before toggle is fired. This check is translated into the LTL formula

shown in Listing 15. The left part of the implication is true iff the

event toggle will eventually be fired in all possible evolutions. As

nothing can prevent an event from being fired, this of course is

true. Therefore, the result of this specific check depends only on

the right site of the implication. There it is assured that the

current state is not on until the event toggle is fired. So this is

straight forward the originally formulated condition.

1. LTLSPEC ((F (in_toggle)) -> ((!(_current_state = on)) U (in_toggle)))
2. --Condition 'on' is not true before 'toggle'

 | Condition 'on' can be true before 'toggle'

Listing 15 NuSMV P is false before R checks (generated by mbeddr)

Model Checking with mbeddr

26

6 Conclusion

 This paper gives a rough walkthrough how state machines can be

modelled and checked with mbeddr. It shows the mathematical

languages CTL and LTL and how they are used in mbeddr and

NuSMV. The modelling possibilities for state machines in mbeddr

are discussed including the unit test support and the translation to

C code. Furthermore, the possibilities provided by mbeddr of

formulating desired properties for a state model are shown. Finally

it is revealed how mbeddr uses NuSMV to do the check work.

It is apparent that supporting higher level abstractions like state

machines as a first level language concept brings many benefits.

Not only an IDE can support a good readable syntax but also can

generate valuable outputs, e.g., graphical representations or

translations for other tools like NuSMV. Furthermore,

automatisms can be supported like default check cases.

Eliminating the manual work not only saves time but also

increases quality.

Unit tests are an important tool for software development. They

not only help avoiding bugs, they can also help to improve system

design and architecture. Furthermore, good unit tests can show

how a unit can be accessed. But there is one intrinsic down side:

They only check particular cases. A fully coverage of all

possibilities a system can run through is hardly possible. This is

where model checking comes into play. Symbolic model checking

allows to proof that a given property holds in every possible system

run. This power comes with a price: The properties have to be

written in a mathematical language. This language is not

necessarily intuitive and may be difficult to use correctly. It is

probably not the language of a software engineer used to write

imperative code.

None the less, the certainty of a mathematical proof can be of high

value. Especially for safety critical systems. Today different

technologies are available. This paper discussed how state

machines can be analysed using mbeddr together with NuSMV

relying on a BDD based proofing technique. Other approaches

exist. E.g., NuSMV was extended with a SAT based bounded model

checker [25]. mbeddr includes an alternative to NuSMV: it

supports the CBMC bounded model checker [26].

Model Checking with mbeddr

27

7 References

[1] Roberto Cavada, Alessandro Cimatti, Gavin Keighren, Emanuele Olivetti, Marco

Pistore and Marco Roveri, “NuSMV 2.5 Tutorial,” [Online]. Available:

http://nusmv.fbk.eu/NuSMV/tutorial/index.html. [Accessed 10 March 2013].

[2] Daniel Ratiu, Markus Voelter, Bernhard Schaetz, Bernd Kolb, “Language Engineering

as an Enabler for Incrementally Defined Formal Analyses,” in FORMSERA 2012

Workshop, 2012.

[3] Bernd Kolb, Markus Völter, Daniel Ratiu, Domenik Pavletic, “mbeddr.com |

engineering the future of embedded software.,” itemis, [Online]. Available:

http://mbeddr.wordpress.com/. [Accessed 30 May 2013].

[4] “JetBrains :: Meta Programming System - Language Oriented Programming

environment and DSL creation tool,” JetBrains, [Online]. Available:

http://www.jetbrains.com/mps/. [Accessed 30 May 2013].

[5] M. Steiner, “Model Checking decision tables with mbeddr and yices,” Rapperswil,

2013.

[6] Daniel Ratiu, Markus Voelter, Zaur Molotnikov, Bernhard Schaetz, “Implementing

Modular Domain Specific Languages and Analyses,” in Modevva, 2012.

[7] “NuSMV home page,” open source, [Online]. Available: http://nusmv.fbk.eu/. [Accessed

20 May 2013].

[8] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R.

Sebastiani and A. Tacchella, “NuSMV 2: An OpenSource Tool for Symbolic Model

Checking,” in CAV 2002, Copenhagen, 2002.

[9] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang, “Symbolic

model checking: 10^20 States and beyond*,” Information and Computation ,

98(2):142–170, 1992.

[10] E. Clarke, O. Grumberg and K. Hamaguchi, “Another Look at LTL Model Checking,”

1994.

[11] A. Cimatti, E. Clarke, F. Giunchiglia and M. Roveri, “NUSMV: a new symbolic model

checker,” STTT International Journal on Software Tools for Technology Transfer,

1999.

[12] E. Axelsson, “Functional Discoveries: Difference between LTL and CTL,” [Online].

Available: http://fun-discoveries.blogspot.ch/2012/04/difference-between-ltl-and-

ctl.html. [Accessed 02 June 2013].

[13] “lo.logic - What is the difference between LTL and CTL? - Theoretical Computer

Science Stack Exchange,” [Online]. Available:

http://cstheory.stackexchange.com/questions/6735/what-is-the-difference-between-ltl-

and-ctl. [Accessed 02 June 2013].

Model Checking with mbeddr

28

[14] E. A. Emerson, “Temporal And Modal Logic*,” 14 March 1995. [Online]. Available:

http://samy.informatik.hu-berlin.de/top/lehre/WS04-

05/sem_spezi_verifi/literatur/emerson_tempNmodalLogik.ps. [Accessed 02 June 2013].

[15] “Temporal logic,” Wikipedia, [Online]. Available:

http://en.wikipedia.org/wiki/Temporal_logic. [Accessed 13 May 2013].

[16] “Temporale Logik,” Wikipedia, [Online]. Available:

http://de.wikipedia.org/wiki/Temporale_Logik. [Accessed 13 May 2013].

[17] “Linear temporal logic,” Wikipedia, [Online]. Available:

http://en.wikipedia.org/wiki/Linear_temporal_logic. [Accessed 13 May 2013].

[18] “Lineare temporale Logik,” Wikipedia, [Online]. Available:

http://de.wikipedia.org/wiki/Lineare_temporale_Logik. [Accessed 13 May 2013].

[19] “Computation tree logic,” Wikipedia, [Online]. Available:

http://en.wikipedia.org/wiki/Computation_tree_logic. [Accessed 13 May 2013].

[20] “Computation Tree Logic,” Wikipedia, [Online]. Available:

http://de.wikipedia.org/wiki/Computation_Tree_Logic. [Accessed 13 May 2013].

[21] “CTL*,” Wikipedia, [Online]. Available: http://en.wikipedia.org/wiki/CTL*. [Accessed

13 May 2013].

[22] “First-order logic,” Wikipedia, [Online]. Available: http://en.wikipedia.org/wiki/First-

order_logic. [Accessed 18 May 2013].

[23] Hamid Alavi, George Avrunin, James Corbett, Laura Dillon, Matt Dwyer, Corina

Pasareanu , “About Specification Patterns,” SAnTos laboratory, [Online]. Available:

http://patterns.projects.cis.ksu.edu/. [Accessed 30 May 2013].

[24] “mbeddr c userguide,” [Online]. Available: http://mbeddr.com. [Accessed 29 March

2013].

[25] A. Cimatti, E. Giunchiglia, M. Roveri, M. Pistore, R. Sebastiani and A. Tacchella,

“Integrating BDD-based and SAT-based Symbolic Model Checking,” in 4th

International Workshop on Frontiers of Combining Systems, Santa Margherita Ligure,

2002.

[26] “The CBMC Homepage,” [Online]. Available: http://www.cprover.org/cbmc/. [Accessed

03 June 2013].

Model Checking with mbeddr

29

Appendix

 The appendix consists of four parts: The documentation of a bug

found in mbeddr, a very short introduction to BDDs, the complete,

unmodified C code for the LightSwitch and the complete,

unmodified input for NuSMV.

8 Bug Report

 While working on this paper, I found and reported a bug. Fiddling

around with some checks in mbeddr, I realized that the check

outcome depends on the existence of other checks. Actually the

results seemed quite random. Asking the developers of mbeddr,

they confirmed the bug and provided the following workaround:

The check conditions based on CTL must be stated in front of the

LTL conditions.

9 Binary Decision Diagrams BDDs

 This chapter gives a very short introduction to Binary Decision

Diagrams BDDs. A BDD is a directed acyclic graph. It represents a

Boolean formula. Figure 10 shows the BDD for the formula

“(a ∧ b) ∨ (c ∧ d)”. Given a specific assignment for the variables, one

can determine the result of the formula by traversing the graph

starting at its root. The assignment a = 0, b = 1, c = 1, d = 0 leads

to a leaf with value 0. Therefore, the result of the formula is false.

This can be seen in Figure 11.

Figure 10 BDD for the formula

(a ∧ b) ∨ (c ∧ d) [9]

 Figure 11 BDD evaluation of the formula

(a ∧ b) ∨ (c ∧ d) for a = 0, b = 1, c = 1, d = 0

Model Checking with mbeddr

30

10 LightSwitch C Code

 Subsequent is the C code for the LightSwitch. This code is

automatically generated by mbeddr. This is the original version

with original variable names.

1. #define MAIN_SERVICESTATE_THRESHOLD (255)
2. #define MAIN_MIN_BRIGHTNESS (1)
3. #define MAIN_MAX_BRIGHTNESS (8)
4. #define MAIN_BRIGHTNESS_START (5)
5.
6.
7. typedef enum ___main_sm_events_LightSwitch{
8. main_sm_events_LightSwitch__LightSwitch__event_toggle,
9. main_sm_events_LightSwitch__LightSwitch__event_dimUp,
10. main_sm_events_LightSwitch__LightSwitch__event_dimDown
11. } main_sm_events_LightSwitch;
12.
13. typedef enum ___main_sm_states_LightSwitch{
14. main_sm_states_LightSwitch__LightSwitch_off__state,
15. main_sm_states_LightSwitch__LightSwitch_on__state,
16. main_sm_states_LightSwitch__LightSwitch_servicestate__state
17. } main_sm_states_LightSwitch;
18.
19. struct main_sm_data_LightSwitch {
20. main_sm_states_LightSwitch __currentState;
21. uint8_t onCounter;
22. uint8_t brightness;
23. };
24.
25. void main_sm_init_LightSwitch(struct main_sm_data_LightSwitch* instance)
26. {
27. instance->__currentState = main_sm_states_LightSwitch__LightSwitch_off__state;
28. instance->onCounter = 0;
29. instance->brightness = MAIN_BRIGHTNESS_START;
30. }
31.
32. void main_sm_execute_LightSwitch(struct main_sm_data_LightSwitch* instance, main_sm_

events_LightSwitch event, void** arguments)
33. {
34. switch (instance->__currentState)
35. {
36. case main_sm_states_LightSwitch__LightSwitch_off__state: {
37. switch (event)
38. {
39. case main_sm_events_LightSwitch__LightSwitch__event_toggle: {
40. if (instance->onCounter < MAIN_SERVICESTATE_THRESHOLD)
41. {
42. // switch state
43. instance-

>__currentState = main_sm_states_LightSwitch__LightSwitch_on__state;
44. // entry actions
45. ++instance->onCounter;
46. return ;
47. }
48.
49. if (instance->onCounter >= MAIN_SERVICESTATE_THRESHOLD)
50. {
51. // switch state
52. instance-

>__currentState = main_sm_states_LightSwitch__LightSwitch_servicestate__state;
53. return ;
54. }
55.

Model Checking with mbeddr

31

56. break;
57. }
58. }
59.
60. break;
61. }
62. case main_sm_states_LightSwitch__LightSwitch_on__state: {
63. switch (event)
64. {
65. case main_sm_events_LightSwitch__LightSwitch__event_toggle: {
66. if (1)
67. {
68. // switch state
69. instance-

>__currentState = main_sm_states_LightSwitch__LightSwitch_off__state;
70. return ;
71. }
72.
73. break;
74. }
75. case main_sm_events_LightSwitch__LightSwitch__event_dimDown: {
76. if (instance->brightness <= MAIN_MIN_BRIGHTNESS)
77. {
78. // switch state
79. instance-

>__currentState = main_sm_states_LightSwitch__LightSwitch_off__state;
80. return ;
81. }
82.
83. if (instance->brightness > MAIN_MIN_BRIGHTNESS)
84. {
85. // transition actions
86. --instance->brightness;
87. // switch state
88. instance-

>__currentState = main_sm_states_LightSwitch__LightSwitch_on__state;
89. // entry actions
90. ++instance->onCounter;
91. return ;
92. }
93.
94. break;
95. }
96. case main_sm_events_LightSwitch__LightSwitch__event_dimUp: {
97. if (instance->brightness < MAIN_MAX_BRIGHTNESS)
98. {
99. // transition actions
100. ++instance->brightness;
101. // switch state
102. instance-

>__currentState = main_sm_states_LightSwitch__LightSwitch_on__state;
103. // entry actions
104. ++instance->onCounter;
105. return ;
106. }
107.
108. break;
109. }
110. }
111.
112. break;
113. }
114. case main_sm_states_LightSwitch__LightSwitch_servicestate__state: {
115. switch (event)
116. {
117. }

Model Checking with mbeddr

32

118.
119. break;
120. }
121. }
122.
123. }

Listing 16 Generated C code for LightSwitch

11 LightSwitch NuSMV Code

 Subsequent is the input for NuSMV. This code is automatically

generated by mbeddr. This is the original version with original

variable names.

1. --r:e9b6775d-aa85-4773-8f3a-876caff40de4(LightSwitch.Main.main)
2.
3. MODULE statemachine(in__toggle__present_ID_2288752385279320977, in__dimUp__present_

ID_2288752385279321016, in__dimDown__present_ID_2288752385279321017)
4.
5. VAR
6. lv__onCounter_ID_2288752385279320971:-1..256;
7. lv__brightness_ID_2288752385279321005:0..9;
8. _current_state:{off_ID_2288752385279320980,on_ID_2288752385279320992,servicestat

e_ID_2288752385279321001};
9. _nondeterminism_detector:{no_nondeterminism,nd_detected_inoff,nd_detected_inon,n

d_detected_inservicestate};
10. _dead_transition:{dead_trans_init,state_off_transition_0_is_dead,state_off_trans

ition_1_is_dead,state_on_transition_0_is_dead,state_on_transition_1_is_dead,state_on
_transition_2_is_dead,state_on_transition_3_is_dead};

11.
12.
13. ASSIGN
14. init (_current_state) := off_ID_2288752385279320980;
15. next (_current_state) := case
16. (_current_state = off_ID_2288752385279320980) & (in__toggle__present_ID_2288

752385279320977 = TRUE) & (lv__onCounter_ID_2288752385279320971 < 255) : on_ID_22887
52385279320992;

17. (_current_state = off_ID_2288752385279320980) & (in__toggle__present_ID_2288
752385279320977 = TRUE) & (lv__onCounter_ID_2288752385279320971 >= 255) : servicesta
te_ID_2288752385279321001;

18. (_current_state = on_ID_2288752385279320992) & (in__toggle__present_ID_22887
52385279320977 = TRUE) : off_ID_2288752385279320980;

19. (_current_state = on_ID_2288752385279320992) & (in__dimDown__present_ID_2288
752385279321017 = TRUE) & (lv__brightness_ID_2288752385279321005 <= 1) : off_ID_2288
752385279320980;

20. (_current_state = on_ID_2288752385279320992) & (in__dimDown__present_ID_2288
752385279321017 = TRUE) & (lv__brightness_ID_2288752385279321005 > 1) : on_ID_228875
2385279320992;

21. (_current_state = on_ID_2288752385279320992) & (in__dimUp__present_ID_228875
2385279321016 = TRUE) & (lv__brightness_ID_2288752385279321005 < 8) : on_ID_22887523
85279320992;

22. !(((_current_state = off_ID_2288752385279320980) & (in__toggle__present_ID_2
288752385279320977 = TRUE) & (lv__onCounter_ID_2288752385279320971 < 255))) & !(((_c
urrent_state = off_ID_2288752385279320980) & (in__toggle__present_ID_228875238527932
0977 = TRUE) & (lv__onCounter_ID_2288752385279320971 >= 255))) & !(((_current_state
= on_ID_2288752385279320992) & (in__toggle__present_ID_2288752385279320977 = TRUE)))
& !(((_current_state = on_ID_2288752385279320992) & (in__dimDown__present_ID_2288752
385279321017 = TRUE) & (lv__brightness_ID_2288752385279321005 <= 1))) & !(((_current
_state = on_ID_2288752385279320992) & (in__dimDown__present_ID_2288752385279321017 =
TRUE) & (lv__brightness_ID_2288752385279321005 > 1))) & !(((_current_state = on_ID_2

Model Checking with mbeddr

33

288752385279320992) & (in__dimUp__present_ID_2288752385279321016 = TRUE) & (lv__brig
htness_ID_2288752385279321005 < 8))) : _current_state;

23. esac;
24.
25. init (_nondeterminism_detector) := no_nondeterminism;
26. next (_nondeterminism_detector) := case
27. (_current_state = off_ID_2288752385279320980) & (in__toggle__present_ID_2288

752385279320977 = TRUE) & (lv__onCounter_ID_2288752385279320971 >= 255) & (lv__onCou
nter_ID_2288752385279320971 < 255) : nd_detected_inoff;

28. (_current_state = off_ID_2288752385279320980) & (in__toggle__present_ID_2288
752385279320977 = TRUE) & (lv__onCounter_ID_2288752385279320971 < 255) & (lv__onCoun
ter_ID_2288752385279320971 >= 255) : nd_detected_inoff;

29. (_current_state = on_ID_2288752385279320992) & (in__dimDown__present_ID_2288
752385279321017 = TRUE) & (lv__brightness_ID_2288752385279321005 > 1) & (lv__brightn
ess_ID_2288752385279321005 <= 1) : nd_detected_inon;

30. (_current_state = on_ID_2288752385279320992) & (in__dimDown__present_ID_2288
752385279321017 = TRUE) & (lv__brightness_ID_2288752385279321005 <= 1) & (lv__bright
ness_ID_2288752385279321005 > 1) : nd_detected_inon;

31. TRUE : no_nondeterminism;
32. esac;
33.
34. init (_dead_transition) := dead_trans_init;
35. next (_dead_transition) := case
36. (_current_state = off_ID_2288752385279320980) & (in__toggle__present_ID_2288

752385279320977 = TRUE) & (lv__onCounter_ID_2288752385279320971 < 255) : state_off_t
ransition_0_is_dead;

37. (_current_state = off_ID_2288752385279320980) & (in__toggle__present_ID_2288
752385279320977 = TRUE) & (lv__onCounter_ID_2288752385279320971 >= 255) : state_off_
transition_1_is_dead;

38. (_current_state = on_ID_2288752385279320992) & (in__toggle__present_ID_22887
52385279320977 = TRUE) & (TRUE) : state_on_transition_0_is_dead;

39. (_current_state = on_ID_2288752385279320992) & (in__dimDown__present_ID_2288
752385279321017 = TRUE) & (lv__brightness_ID_2288752385279321005 <= 1) : state_on_tr
ansition_1_is_dead;

40. (_current_state = on_ID_2288752385279320992) & (in__dimDown__present_ID_2288
752385279321017 = TRUE) & (lv__brightness_ID_2288752385279321005 > 1) : state_on_tra
nsition_2_is_dead;

41. (_current_state = on_ID_2288752385279320992) & (in__dimUp__present_ID_228875
2385279321016 = TRUE) & (lv__brightness_ID_2288752385279321005 < 8) : state_on_trans
ition_3_is_dead;

42. TRUE : dead_trans_init;
43. esac;
44.
45. init (lv__onCounter_ID_2288752385279320971) := 0;
46. init (lv__brightness_ID_2288752385279321005) := 5;
47. next (lv__onCounter_ID_2288752385279320971) := case
48. (_current_state = off_ID_2288752385279320980) & (in__toggle__present_ID_2288

752385279320977 = TRUE) & (lv__onCounter_ID_2288752385279320971 < 255) : lv__onCount
er_ID_2288752385279320971 + 1 < 0 ? -
1 : lv__onCounter_ID_2288752385279320971 + 1 > 255 ? 256 : lv__onCounter_ID_22887523
85279320971 + 1;

49. (_current_state = on_ID_2288752385279320992) & (in__dimDown__present_ID_2288
752385279321017 = TRUE) & (lv__brightness_ID_2288752385279321005 > 1) : lv__onCounte
r_ID_2288752385279320971 + 1 < 0 ? -
1 : lv__onCounter_ID_2288752385279320971 + 1 > 255 ? 256 : lv__onCounter_ID_22887523
85279320971 + 1;

50. (_current_state = on_ID_2288752385279320992) & (in__dimUp__present_ID_228875
2385279321016 = TRUE) & (lv__brightness_ID_2288752385279321005 < 8) : lv__onCounter_
ID_2288752385279320971 + 1 < 0 ? -
1 : lv__onCounter_ID_2288752385279320971 + 1 > 255 ? 256 : lv__onCounter_ID_22887523
85279320971 + 1;

51. !(((_current_state = off_ID_2288752385279320980) & (in__toggle__present_ID_2
288752385279320977 = TRUE) & (lv__onCounter_ID_2288752385279320971 < 255))) & !(((_c
urrent_state = on_ID_2288752385279320992) & (in__dimDown__present_ID_228875238527932
1017 = TRUE) & (lv__brightness_ID_2288752385279321005 > 1))) & !(((_current_state =
on_ID_2288752385279320992) & (in__dimUp__present_ID_2288752385279321016 = TRUE) & (l

Model Checking with mbeddr

34

v__brightness_ID_2288752385279321005 < 8))) : lv__onCounter_ID_2288752385279320971 <
0 ? -
1 : lv__onCounter_ID_2288752385279320971 > 255 ? 256 : lv__onCounter_ID_228875238527
9320971;

52. esac;
53.
54. next (lv__brightness_ID_2288752385279321005) := case
55. (_current_state = on_ID_2288752385279320992) & (in__dimDown__present_ID_2288

752385279321017 = TRUE) & (lv__brightness_ID_2288752385279321005 > 1) : lv__brightne
ss_ID_2288752385279321005 - 1 < 1 ? 0 : lv__brightness_ID_2288752385279321005 - 1 >
8 ? 9 : lv__brightness_ID_2288752385279321005 - 1;

56. (_current_state = on_ID_2288752385279320992) & (in__dimUp__present_ID_228875
2385279321016 = TRUE) & (lv__brightness_ID_2288752385279321005 < 8) : lv__brightness
_ID_2288752385279321005 + 1 < 1 ? 0 : lv__brightness_ID_2288752385279321005 + 1 > 8
? 9 : lv__brightness_ID_2288752385279321005 + 1;

57. !(((_current_state = on_ID_2288752385279320992) & (in__dimDown__present_ID_2
288752385279321017 = TRUE) & (lv__brightness_ID_2288752385279321005 > 1))) & !(((_cu
rrent_state = on_ID_2288752385279320992) & (in__dimUp__present_ID_228875238527932101
6 = TRUE) & (lv__brightness_ID_2288752385279321005 < 8))) : lv__brightness_ID_228875
2385279321005 < 1 ? 0 : lv__brightness_ID_2288752385279321005 > 8 ? 9 : lv__brightne
ss_ID_2288752385279321005;

58. esac;
59.
60.
61. SPEC AG _current_state != off_ID_2288752385279320980
62. --

SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD###State 'off' is reachable | State 'off' is unre
achable

63.
64. SPEC AG _current_state != on_ID_2288752385279320992
65. --

SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD###State 'on' is reachable | State 'on' is unreac
hable

66.
67. SPEC AG _current_state != servicestate_ID_2288752385279321001
68. --

SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD###State 'servicestate' is reachable | State 'ser
vicestate' is unreachable

69.
70. SPEC AG (0 <= lv__onCounter_ID_2288752385279320971 & lv__onCounter_ID_22887523852

79320971 <= 255)
71. --

Variable 'onCounter' is always between its defined bounds | Variable 'onCounter' is
possibly out of range

72.
73. SPEC AG (1 <= lv__brightness_ID_2288752385279321005 & lv__brightness_ID_228875238

5279321005 <= 8)
74. --

Variable 'brightness' is always between its defined bounds | Variable 'brightness' i
s possibly out of range

75.
76. SPEC AG _nondeterminism_detector != nd_detected_inoff
77. --

State 'off' has deterministic transitions | State 'off' contains nondeterministic tr
ansitions

78.
79. SPEC AG _nondeterminism_detector != nd_detected_inon
80. --

State 'on' has deterministic transitions | State 'on' contains nondeterministic tran
sitions

81.
82. SPEC AG _nondeterminism_detector != nd_detected_inservicestate
83. --

State 'servicestate' has deterministic transitions | State 'servicestate' contains n
ondeterministic transitions

84.

Model Checking with mbeddr

35

85. SPEC AG _dead_transition != state_off_transition_0_is_dead
86. --

SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD###Transition 0 of state 'off' is not dead | Tran
sition 0 of state 'off' is dead

87.
88. SPEC AG _dead_transition != state_off_transition_1_is_dead
89. --

SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD###Transition 1 of state 'off' is not dead | Tran
sition 1 of state 'off' is dead

90.
91. SPEC AG _dead_transition != state_on_transition_0_is_dead
92. --

SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD###Transition 0 of state 'on' is not dead | Trans
ition 0 of state 'on' is dead

93.
94. SPEC AG _dead_transition != state_on_transition_1_is_dead
95. --

SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD###Transition 1 of state 'on' is not dead | Trans
ition 1 of state 'on' is dead

96.
97. SPEC AG _dead_transition != state_on_transition_2_is_dead
98. --

SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD###Transition 2 of state 'on' is not dead | Trans
ition 2 of state 'on' is dead

99.
100. SPEC AG _dead_transition != state_on_transition_3_is_dead
101. --

SUCCESS_WHEN_PROPERTY_DOES_NOT_HOLD###Transition 3 of state 'on' is not dead | Trans
ition 3 of state 'on' is dead

102.
103. SPEC AG (EF _current_state = on_ID_2288752385279320992)
104. --State 'on' is live | State 'on' is not live!
105.
106. SPEC AG (EF _current_state = servicestate_ID_2288752385279321001)
107. --State 'servicestate' is live | State 'servicestate' is not live!
108.
109. LTLSPEC ((F (in__toggle__present_ID_2288752385279320977)) -

> (((!((_current_state = on_ID_2288752385279320992))) U (in__toggle__present_ID_2288
752385279320977))))

110. --
Condition 'on' is not true before 'toggle' | Condition 'on' can be true before 'togg
le'

111.
112.
113. MODULE main
114.
115. VAR
116. in__toggle__present_ID_2288752385279320977:boolean;
117. in__dimUp__present_ID_2288752385279321016:boolean;
118. in__dimDown__present_ID_2288752385279321017:boolean;
119. sm:statemachine(in__toggle__present_ID_2288752385279320977,in__dimUp__present_ID

_2288752385279321016,in__dimDown__present_ID_2288752385279321017);
120.
121. INVAR (TRUE & !((in__dimDown__present_ID_2288752385279321017 & in__dimUp__present_

ID_2288752385279321016)) & !((in__dimDown__present_ID_2288752385279321017 & in__togg
le__present_ID_2288752385279320977)) & !((in__dimUp__present_ID_2288752385279321016
& in__toggle__present_ID_2288752385279320977)) & !((in__toggle__present_ID_228875238
5279320977 & in__dimUp__present_ID_2288752385279321016))) & (FALSE | in__dimDown__pr
esent_ID_2288752385279321017 | in__dimUp__present_ID_2288752385279321016 | in__toggl
e__present_ID_2288752385279320977)

Listing 17 Generated NuSMV input for LightSwitch

	1 Abstract
	2 Introduction
	3 The Mathematical Basis
	3.1 Temporal Logic
	3.2 Linear Temporal Logic LTL
	3.3 Computation Tree Logic CTL
	3.4 CTL*
	3.5 CTL* in mbeddr

	4 State Machines in mbeddr
	4.1 Graphical Representation of a State Model
	4.2 State Model DSL in mbeddr
	4.3 Translation to C-Code
	4.4 Unit Testing a State Model
	4.5 Symbolic Model Checking
	4.5.1 Default Checks
	4.5.2 Manual Analyses

	4.6 Further Possibilities

	5 NuSMV
	5.1 LightSwitch Definition
	5.2 Automatic Checks
	5.3 Manual Checks

	6 Conclusion
	7 References
	8 Bug Report
	9 Binary Decision Diagrams BDDs
	10 LightSwitch C Code
	11 LightSwitch NuSMV Code

